Crossref journal-article
Wiley
Advanced Science (311)
Abstract

AbstractWith the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high‐performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low‐symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field‐effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high‐performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed.

Bibliography

Gong, C., Zhang, Y., Chen, W., Chu, J., Lei, T., Pu, J., Dai, L., Wu, C., Cheng, Y., Zhai, T., Li, L., & Xiong, J. (2017). Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides. Advanced Science, 4(12). Portico.

Authors 12
  1. Chuanhui Gong (first)
  2. Yuxi Zhang (additional)
  3. Wei Chen (additional)
  4. Junwei Chu (additional)
  5. Tianyu Lei (additional)
  6. Junru Pu (additional)
  7. Liping Dai (additional)
  8. Chunyang Wu (additional)
  9. Yuhua Cheng (additional)
  10. Tianyou Zhai (additional)
  11. Liang Li (additional)
  12. Jie Xiong (additional)
References 202 Referenced 290
  1. 10.1016/j.nantod.2016.10.003
  2. 10.1038/nnano.2010.279
  3. 10.1038/nmat1849
  4. 10.1038/nnano.2014.215
  5. 10.1038/nature12385
  6. 10.1021/nn405685j
  7. 10.1021/acs.nanolett.6b03999
  8. 10.1007/s12274-014-0532-x
  9. 10.1063/1.1723695
  10. 10.1021/nn500064s
  11. 10.1038/nphoton.2014.271
  12. 10.1038/nphoton.2015.282
  13. 10.1002/adfm.201606129
  14. 10.1039/C4CS00287C
  15. 10.1038/nnano.2012.193
  16. 10.1002/adma.201504090
  17. 10.1038/nchem.1589
  18. 10.1103/PhysRevB.8.3719
  19. 10.1038/nnano.2014.150
  20. 10.1002/adom.201600323
  21. 10.1002/adom.201600221
  22. 10.1002/adom.201600290
  23. 10.1038/nnano.2013.100
  24. 10.1038/nnano.2014.25
  25. 10.1038/nnano.2014.26
  26. 10.1038/nnano.2014.14
  27. 10.1038/ncomms5458
  28. 10.1002/adfm.201504546
  29. 10.1002/adma.201502585
  30. 10.1021/acs.nanolett.6b00748
  31. 10.1021/acsphotonics.5b00486
  32. 10.1063/1.354268
  33. 10.1038/ncomms5214
  34. 10.1021/nl502557g
  35. 10.1021/nl5045007
  36. 10.1088/2053-1583/1/2/021002
  37. 10.1021/acs.jpcc.6b08748
  38. 10.1038/srep13783
  39. 10.1088/2053-1583/3/4/045016
  40. 10.1038/ncomms4252
  41. 10.1038/ncomms5475
  42. 10.1021/nl500935z
  43. {'journal-title': 'Mater. Chem. Front.', 'year': '2017', 'author': 'Hafeez M.', 'key': 'e_1_2_8_43_1'} / Mater. Chem. Front. by Hafeez M. (2017)
  44. 10.1002/adfm.201670048
  45. 10.1021/ar5002846
  46. 10.1103/PhysRevB.93.115409
  47. 10.1103/PhysRevB.64.235305
  48. 10.1002/adma.201601977
  49. 10.1021/acs.jpcc.6b01044
  50. 10.1021/acsnano.5b04359
  51. 10.1039/C4RA17320A
  52. 10.1038/nnano.2015.10
  53. 10.1021/acsnano.6b04165
  54. 10.1038/srep10013
  55. 10.1038/srep19624
  56. 10.1038/ncomms10671
  57. 10.1021/acs.nanolett.5b00910
  58. 10.1007/s12274-015-0865-0
  59. 10.1021/acs.chemmater.6b00364
  60. 10.1021/acs.chemmater.6b00379
  61. 10.1063/1.4942162
  62. 10.1002/adma.201600722
  63. 10.1021/acsnano.5b02511
  64. 10.1063/1.4959026
  65. 10.1103/PhysRevB.92.115438
  66. 10.1103/PhysRevB.92.054110
  67. 10.1038/ncomms7991
  68. 10.1016/j.physb.2011.03.044
  69. 10.1021/j100393a010
  70. 10.1103/PhysRevLett.105.136805
  71. 10.1038/nmat3687
  72. 10.1038/nnano.2015.70
  73. 10.1021/nn501175k
  74. 10.1038/nnano.2013.277
  75. 10.1039/C6RA18238K
  76. 10.1063/1.4941001
  77. 10.1038/nnano.2012.224
  78. 10.1063/1.4967188
  79. M. W.Iqbal M. Z.Iqbal M. F.Khan M. A.Shehzad Y.Seo J. H.Park C.Hwang J.Eom 2015 5 10699. (10.1038/srep10699)
  80. 10.1021/nn305275h
  81. 10.1021/nl301702r
  82. 10.1103/PhysRevB.62.10812
  83. 10.1002/adfm.201504408
  84. 10.1002/adfm.201601019
  85. 10.1039/C6NR07233J
  86. 10.1088/2053-1583/aa6533
  87. 10.1007/s12274-015-0932-6
  88. 10.1039/c4nr01741b
  89. 10.1080/00018736900101307
  90. 10.1016/0022-4596(84)90330-X
  91. 10.1103/PhysRevB.55.15608
  92. 10.1063/1.365357
  93. 10.1103/PhysRevB.58.16130
  94. 10.1103/PhysRevB.60.15766
  95. 10.1016/S0022-3697(99)00201-2
  96. 10.1039/C6NR01569G
  97. 10.1021/nn5053926
  98. 10.1088/2053-1583/3/3/031010
  99. 10.1038/srep29254
  100. 10.1063/1.4901527
  101. 10.1039/c1cp21159e
  102. 10.1103/PhysRevB.59.1661
  103. 10.1038/nphys3314
  104. 10.1039/C6RA23687A
  105. 10.1126/science.aab3175
  106. 10.1088/0953-8984/28/35/353002
  107. 10.1016/j.jallcom.2004.04.011
  108. 10.1021/acs.nanolett.5b04925
  109. 10.1002/advs.201600177
  110. 10.1038/nmat4477
  111. 10.1002/adma.201503873
  112. 10.1126/science.1102896
  113. 10.1038/nature04233
  114. 10.1038/nature04235
  115. 10.1002/adfm.201500969
  116. 10.1103/PhysRevB.89.155433
  117. 10.1021/acs.nanolett.6b02766
  118. 10.1021/acsnano.5b04851
  119. 10.1002/andp.19925040403
  120. 10.1038/srep05442
  121. 10.1038/ncomms4631
  122. 10.1021/ar500291j
  123. 10.1038/nmat814
  124. 10.1002/smll.200801442
  125. 10.1039/c3tc00710c
  126. 10.1038/ncomms9569
  127. 10.1038/nmat3673
  128. 10.1021/nn405719x
  129. 10.1021/nn303352k
  130. 10.1021/nl1023707
  131. 10.1021/nn503093k
  132. 10.1002/adma.201104798
  133. 10.1002/adfm.201603998
  134. 10.1002/smll.201502392
  135. 10.1038/nmat4064
  136. 10.1038/nmat4091
  137. 10.1038/nnano.2012.256
  138. 10.1126/science.aab4097
  139. 10.1002/adfm.201603884
  140. 10.1002/adma.201502375
  141. 10.1021/acsnano.5b00985
  142. 10.1021/jacs.5b07452
  143. 10.1039/C5CP01649E
  144. 10.1038/ncomms8805
  145. 10.1002/adma.201602687
  146. 10.1002/adma.201603471
  147. 10.1016/j.matchemphys.2007.02.090
  148. 10.1149/1.2108579
  149. 10.1016/0038-1098(87)90162-1
  150. 10.1088/0953-8984/11/27/312
  151. 10.1103/PhysRevB.66.245207
  152. 10.1016/S0038-1098(99)00240-9
  153. 10.1016/S0925-8388(00)01332-3
  154. 10.1002/adma.201501795
  155. 10.1002/smll.201501488
  156. 10.1002/aenm.201601843
  157. 10.1021/nn505354a
  158. 10.1039/C4NR03740E
  159. 10.1002/anie.201510029
  160. 10.1088/2053-1583/2/4/044010
  161. 10.1126/science.1065824
  162. 10.1038/nature10676
  163. 10.1109/55.863106
  164. 10.1109/TDMR.2004.824359
  165. 10.1126/science.1100731
  166. 10.1021/acsnano.6b00980
  167. 10.1021/nn501013c
  168. 10.1002/adma.201305845
  169. 10.1038/nnano.2009.292
  170. 10.1038/nphoton.2008.30
  171. 10.1002/adma.201503340
  172. 10.1088/2053-1583/aa6422
  173. 10.1016/j.spmi.2012.03.030
  174. 10.1038/nnano.2013.219
  175. 10.1038/nnano.2015.112
  176. 10.1088/0957-4484/27/44/445201
  177. 10.1002/adma.201601002
  178. 10.1063/1.4941996
  179. 10.1021/nl060867g
  180. 10.1126/science.1062340
  181. 10.1103/PhysRevB.92.075439
  182. 10.1002/adfm.201601349
  183. 10.1039/C5CP07585H
  184. 10.1038/nmat4218
  185. 10.1109/50.4133
  186. 10.1063/1.122594
  187. 10.1016/S0026-2692(99)00061-0
  188. 10.1002/adma.201601248
  189. 10.1038/nnano.2014.309
  190. 10.1038/nature13792
  191. 10.1021/nn204198g
  192. 10.1021/jz3012436
  193. 10.1126/science.1157996
  194. 10.1021/nn203879f
  195. 10.1039/C5CP06706E
  196. 10.1038/nature06458
  197. 10.1126/science.1072886
  198. 10.1038/35098012
  199. 10.1038/nphys3492
  200. 10.1088/2053-1583/3/4/045010
  201. 10.1038/ncomms9572
  202. 10.1038/ncomms9573
Dates
Type When
Created 7 years, 10 months ago (Oct. 6, 2017, 9:48 a.m.)
Deposited 1 year, 11 months ago (Sept. 17, 2023, 1:17 a.m.)
Indexed 2 weeks, 1 day ago (Aug. 7, 2025, 5:05 a.m.)
Issued 7 years, 10 months ago (Oct. 6, 2017)
Published 7 years, 10 months ago (Oct. 6, 2017)
Published Online 7 years, 10 months ago (Oct. 6, 2017)
Published Print 7 years, 8 months ago (Dec. 1, 2017)
Funders 1
  1. National Natural Science Foundation of China 10.13039/501100001809

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards1
    1. 91421110

@article{Gong_2017, title={Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides}, volume={4}, ISSN={2198-3844}, url={http://dx.doi.org/10.1002/advs.201700231}, DOI={10.1002/advs.201700231}, number={12}, journal={Advanced Science}, publisher={Wiley}, author={Gong, Chuanhui and Zhang, Yuxi and Chen, Wei and Chu, Junwei and Lei, Tianyu and Pu, Junru and Dai, Liping and Wu, Chunyang and Cheng, Yuhua and Zhai, Tianyou and Li, Liang and Xiong, Jie}, year={2017}, month=oct }