Abstract
AbstractThe primary mechanism of optical memoristive devices relies on phase transitions between amorphous and crystalline states. The slow or energy‐hungry amorphous–crystalline transitions in optical phase‐change materials are detrimental to the scalability and performance of devices. Leveraging an integrated photonic platform, nonvolatile and reversible switching between two layered structures of indium selenide (In2Se3) triggered by a single nanosecond pulse is demonstrated. The high‐resolution pair distribution function reveals the detailed atomistic transition pathways between the layered structures. With interlayer “shear glide” and isosymmetric phase transition, switching between the α‐ and β‐structural states contains low re‐configurational entropy, allowing reversible switching between layered structures. Broadband refractive index contrast, optical transparency, and volumetric effect in the crystalline–crystalline phase transition are experimentally characterized in molecular‐beam‐epitaxy‐grown thin films and compared to ab initio calculations. The nonlinear resonator transmission spectra measure of incremental linear loss rate of 3.3 GHz, introduced by a 1.5 µm‐long In2Se3‐covered layer, resulted from the combinations of material absorption and scattering.
Authors
13
- Tiantian Li (first)
- Yong Wang (additional)
- Wei Li (additional)
- Dun Mao (additional)
- Chris J. Benmore (additional)
- Igor Evangelista (additional)
- Huadan Xing (additional)
- Qiu Li (additional)
- Feifan Wang (additional)
- Ganesh Sivaraman (additional)
- Anderson Janotti (additional)
- Stephanie Law (additional)
- Tingyi Gu (additional)
References
68
Referenced
32
10.1038/s41586-020-03070-1
10.1038/s41578-018-0076-x
10.1038/nphoton.2015.182
10.1038/s41467-019-12196-4
10.1002/adfm.202002447
10.1038/nphoton.2017.126
10.1557/mrs.2014.139
10.1126/sciadv.abb7171
10.7567/APEX.10.105601
10.1038/srep39546
10.1002/adma.201908302
10.1143/JJAP.44.7340
{'volume-title': '2020 Int. Applied Computational Electromagnetics Society Symp. (ACES)', 'year': '2020', 'author': 'Miscuglio M.', 'key': 'e_1_2_12_13_1'}
/ 2020 Int. Applied Computational Electromagnetics Society Symp. (ACES) by Miscuglio M. (2020)10.1016/j.solener.2020.03.009
10.1063/1.1689756
10.1021/nl500940z
10.1002/aelm.202100974
10.1038/ncomms8467
10.1063/1.3191670
10.1126/science.aao3212
10.1126/science.1221561
10.1038/nnano.2011.96
10.1038/ncomms5214
10.1021/acs.chemrev.0c00933
10.1038/nature24043
10.1021/nn503576x
10.1021/nl400888p
10.1063/1.4792313
10.1002/pssa.2210300131
10.1038/ncomms14956
10.1002/adma.201703568
10.1021/acsnano.9b02764
10.1063/1.2793505
10.1021/acsami.8b10194
10.1021/acs.inorgchem.8b00778
{'key': 'e_1_2_12_36_1', 'first-page': '852905', 'volume': '2012', 'author': 'Benmore C. J.', 'year': '2012', 'journal-title': 'Int. Scholarly Res. Not.'}
/ Int. Scholarly Res. Not. by Benmore C. J. (2012)10.1038/s41467-017-01608-y
10.1103/PhysRevB.98.165134
10.1021/am400128e
10.1021/acs.nanolett.8b02688
10.1364/OME.8.002570
10.1038/s41928-019-0338-7
10.1126/sciadv.aau5759
10.1038/ncomms4541
10.1364/OPN.27.4.000032
10.1364/OL.427386
10.1016/0022-4596(88)90361-1
10.1002/pssa.2211180228
10.1021/acsomega.0c00224
10.1364/OME.398422
10.1002/adom.202100783
10.1007/s004070050021
10.1107/S0021889813003531
10.1063/1.4879832
10.1021/acs.inorgchem.8b01950
10.1021/acs.chemmater.9b03499
10.1107/S0021889879012863
10.1021/acs.jpclett.7b01089
10.1002/adfm.201803738
10.1088/1361-6463/ab5737
10.1016/0025-5408(95)00185-9
10.1103/PhysRev.140.A1133
10.1103/PhysRev.136.B864
10.1063/1.1564060
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.50.17953
10.1107/S1600576716000455
10.1116/1.5015968
Dates
Type | When |
---|---|
Created | 3 years, 4 months ago (April 18, 2022, 7:04 a.m.) |
Deposited | 2 years ago (Aug. 23, 2023, 4:05 p.m.) |
Indexed | 1 month ago (July 30, 2025, 3:38 a.m.) |
Issued | 3 years, 3 months ago (May 20, 2022) |
Published | 3 years, 3 months ago (May 20, 2022) |
Published Online | 3 years, 3 months ago (May 20, 2022) |
Published Print | 3 years, 2 months ago (July 1, 2022) |
Funders
5
Army Research Office
10.13039/100000183
Region: Americas
gov (National government)
Labels
5
- U.S. Army Research Office
- United States Army Research Office
- U.S. Army Research Laboratory's Army Research Office
- ARL's Army Research Office
- ARO
Awards
1
- W911NF2010078YIP
U.S. Department of Energy
10.13039/100000015
Region: Americas
gov (National government)
Labels
8
- Energy Department
- Department of Energy
- United States Department of Energy
- ENERGY.GOV
- US Department of Energy
- USDOE
- DOE
- USADOE
Office of Science
10.13039/100006132
Region: Americas
gov (National government)
Labels
8
- U.S. DOE Office of Science
- DOE Office of Science
- DOE's Office of Science
- Department of Energy's (DOE's) Office of Science
- The DOE Office of Science
- U.S. Department of Energy Office of Science
- U.S. Dept. of Energy Office of Science
- SC
Basic Energy Sciences
10.13039/100006151
Region: Americas
gov (National government)
Labels
6
- Office of Basic Energy Sciences
- DOE Office of Basic Energy Sciences
- US Department of Energy's Basic Energy Sciences
- DOE Basic Energy Sciences
- Department of Energy Basic Energy Sciences Program
- BES
Awards
1
- DE‐SC0016380
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
2
- DE‐ AC02‐06CH11357
- ACI‐1053575
@article{Li_2022, title={Structural Phase Transitions between Layered Indium Selenide for Integrated Photonic Memory}, volume={34}, ISSN={1521-4095}, url={http://dx.doi.org/10.1002/adma.202108261}, DOI={10.1002/adma.202108261}, number={26}, journal={Advanced Materials}, publisher={Wiley}, author={Li, Tiantian and Wang, Yong and Li, Wei and Mao, Dun and Benmore, Chris J. and Evangelista, Igor and Xing, Huadan and Li, Qiu and Wang, Feifan and Sivaraman, Ganesh and Janotti, Anderson and Law, Stephanie and Gu, Tingyi}, year={2022}, month=may }