Crossref journal-article
Wiley
Advanced Materials (311)
Abstract

AbstractThe chemical conversion of small molecules such as H2, H2O, O2, N2, CO2, and CH4to energy and chemicals is critical for a sustainable energy future. However, the high chemical stability of these molecules poses grand challenges to the practical implementation of these processes. In this regard, computational approaches such as density functional theory, microkinetic modeling, data science, and machine learning have guided the rational design of catalysts by elucidating mechanistic insights, identifying active sites, and predicting catalytic activity. Here, the theory and methodologies for heterogeneous catalysis and their applications for small‐molecule activation are reviewed. An overview of fundamental theory and key computational methods for designing catalysts, including the emerging data science techniques in particular, is given. Applications of these methods for finding efficient heterogeneous catalysts for the activation of the aforementioned small molecules are then surveyed. Finally, promising directions of the computational catalysis field for further outlooks are discussed, focusing on the challenges and opportunities for new methods.

Bibliography

Gu, G. H., Choi, C., Lee, Y., Situmorang, A. B., Noh, J., Kim, Y., & Jung, Y. (2020). Progress in Computational and Machine‐Learning Methods for Heterogeneous Small‐Molecule Activation. Advanced Materials, 32(35). Portico.

Authors 7
  1. Geun Ho Gu (first)
  2. Changhyeok Choi (additional)
  3. Yeunhee Lee (additional)
  4. Andres B. Situmorang (additional)
  5. Juhwan Noh (additional)
  6. Yong‐Hyun Kim (additional)
  7. Yousung Jung (additional)
References 252 Referenced 58
  1. 10.1126/science.aad4998
  2. 10.1016/j.ijhydene.2013.09.054
  3. 10.1016/j.ijhydene.2011.10.004
  4. 10.1016/j.chempr.2019.05.008
  5. 10.1016/j.cattod.2017.01.023
  6. 10.1039/C4CS00085D
  7. 10.1080/00986445.2014.923995
  8. 10.1126/science.1215081
  9. 10.1126/science.1212858
  10. 10.1002/cctc.201000397
  11. 10.1038/nmat4760
  12. 10.1038/s41929-018-0200-8
  13. {'key': 'e_1_2_7_13_1', 'first-page': '3', 'volume-title': 'Studies in Surface Science and Catalysis', 'author': 'Moulijn J. A.', 'year': '1993'} / Studies in Surface Science and Catalysis by Moulijn J. A. (1993)
  14. F.Haber R. L.Rossignol US Patent US1202995A 1909.
  15. 10.1021/ja02242a004
  16. 10.1021/j100238a002
  17. 10.1098/rspa.1936.0060
  18. 10.1515/zpch-1924-10814 / Z. Phys. Chem., Stöchiom. Verwandtschaftsl. by Brønsted J. N. (1924)
  19. 10.1039/tf9383400011
  20. 10.1007/s10562-010-0477-y
  21. 10.1021/cs400942u
  22. 10.1021/acscatal.6b00776
  23. 10.1039/C6CY00865H
  24. {'volume-title': 'La catalyse en Chimie Organique', 'year': '1920', 'author': 'Sabatier P.', 'key': 'e_1_2_7_24_1'} / La catalyse en Chimie Organique by Sabatier P. (1920)
  25. {'volume-title': 'La Cinétique des Réactions en Catalyse Hétérogène', 'year': '1982', 'author': 'Boudart M.', 'key': 'e_1_2_7_25_1'} / La Cinétique des Réactions en Catalyse Hétérogène by Boudart M. (1982)
  26. 10.1002/bbpc.19600640206
  27. 10.1016/S0360-0564(08)60405-8
  28. 10.1038/s41563-019-0396-2
  29. 10.1021/acs.chemmater.7b02399
  30. 10.1021/acscatal.7b04457
  31. 10.1021/acs.jpcc.7b10439
  32. 10.1038/s41467-019-09846-y
  33. 10.1002/andp.19263851302
  34. 10.1002/andp.19273892002
  35. 10.1103/PhysRev.140.A1133
  36. 10.1080/00268976.2017.1333644
  37. 10.1103/PhysRevLett.77.3865
  38. 10.1103/PhysRevLett.80.890
  39. 10.1103/PhysRevB.59.7413
  40. 10.1002/jcc.20495
  41. 10.1063/1.3382344
  42. 10.1103/PhysRevB.85.235149
  43. {'volume-title': 'Summer School on Machine Learning', 'year': '2003', 'author': 'Rasmussen C. E.', 'key': 'e_1_2_7_43_1'} / Summer School on Machine Learning by Rasmussen C. E. (2003)
  44. 10.1016/S0039-6028(01)01551-5
  45. {'volume-title': 'Principles of Adsorption and Reaction on Solid Surfaces', 'year': '1996', 'author': 'Masel R. I.', 'key': 'e_1_2_7_45_1'} / Principles of Adsorption and Reaction on Solid Surfaces by Masel R. I. (1996)
  46. 10.1103/PhysRevB.65.035406
  47. 10.1103/PhysRevB.38.7649
  48. 10.1103/PhysRevB.35.9625
  49. 10.1063/1.3700442
  50. 10.1016/0039-6028(96)80007-0
  51. 10.1038/376238a0
  52. 10.1038/nchem.121
  53. {'key': 'e_1_2_7_53_1', 'first-page': '71', 'volume-title': 'Advances in catalysis', 'author': 'Hammer B.', 'year': '2000'} / Advances in catalysis by Hammer B. (2000)
  54. 10.1073/pnas.1006652108
  55. 10.1007/s11244-013-0157-4
  56. 10.1016/j.jcat.2014.12.033
  57. 10.1002/anie.200462127
  58. 10.1038/nmat1840
  59. 10.1002/cssc.201501112
  60. 10.1021/jp047349j
  61. 10.1021/acs.jpclett.5b01043
  62. 10.1021/acs.jpcc.8b10046
  63. 10.1021/acs.chemrev.8b00481
  64. 10.1021/acscatal.7b03477
  65. 10.1021/acs.jpclett.6b00382
  66. 10.1063/1.5047829
  67. 10.1103/PhysRevB.86.075140
  68. 10.1073/pnas.1612106114
  69. 10.1021/jacs.5b11390
  70. 10.1063/1.4978411
  71. 10.1021/acscatal.8b02793
  72. 10.1063/1.4865107
  73. K.Mathew R. G.Hennig arXiv:1601.033462016.
  74. 10.1016/0021-9517(86)90103-X
  75. 10.1002/aic.690390708
  76. 10.1016/j.ces.2011.05.050
  77. 10.1016/S0167-5729(97)00016-2
  78. 10.1063/1.3596751
  79. 10.1038/ncomms9619
  80. 10.1063/1.4998926
  81. 10.1149/1.1856988
  82. 10.1038/nmat1752
  83. 10.1021/acs.jpclett.5b01660
  84. 10.1016/j.cattod.2016.04.013
  85. 10.1039/C7SC03422A
  86. 10.1039/C6RA04345C
  87. 10.1021/acs.jpcc.7b12670
  88. 10.1016/j.ces.2014.09.011
  89. 10.1021/jp107836a
  90. 10.1021/jp2091413
  91. 10.1021/acs.jpcc.7b07340
  92. 10.1021/acs.jpcc.6b06430
  93. 10.1021/acs.jpcc.5b01696
  94. 10.1021/ie502049a
  95. 10.1039/C7RE00210F
  96. 10.1039/C9ME00078J
  97. 10.1038/ncomms14621
  98. 10.1063/1.1750822
  99. 10.1021/jp405760z
  100. 10.1039/C9TA02356A
  101. 10.1002/aic.16198
  102. 10.1063/1.4977487
  103. 10.1038/s41586-018-0337-2
  104. 10.1016/j.jmat.2017.08.002
  105. 10.1093/nar/gkw1074
  106. 10.1021/ja902302h
  107. 10.1021/ci300415d
  108. 10.1038/sdata.2014.22
  109. 10.1021/ci049714
  110. 10.1016/j.commatsci.2012.02.005
  111. 10.1107/S0108767307038081
  112. 10.1107/S0108768102006948
  113. 10.1063/1.4812323
  114. 10.1038/s41524-019-0239-3
  115. 10.1038/npjcompumats.2015.10
  116. 10.1038/s41597-019-0081-y
  117. 10.1016/j.commatsci.2017.07.030
  118. 10.1038/s41929-018-0142-1
  119. 10.1038/nature14539
  120. 10.1080/00401706.1970.10488634
  121. 10.1111/j.2517-6161.1996.tb02080.x / J. R. Stat. Soc. B by Tibshirani R. (1996)
  122. 10.1111/j.1467-9868.2005.00503.x
  123. 10.1016/S0169-7439(01)00155-1
  124. 10.1103/PhysRevMaterials.2.083802
  125. 10.1023/A:1018628609742
  126. 10.1109/21.97458
  127. {'volume-title': 'Proc. of 3rd Int. Conf. on Document Analysis and Recognition', 'year': '1995', 'author': 'Tin Kam H.', 'key': 'e_1_2_7_127_1'} / Proc. of 3rd Int. Conf. on Document Analysis and Recognition by Tin Kam H. (1995)
  128. 10.1016/j.shpsc.2004.09.003
  129. 10.1021/acscatal.8b04478
  130. 10.1038/s41467-019-12709-1
  131. {'volume-title': 'ICML', 'year': '1998', 'author': 'Saunders C.', 'key': 'e_1_2_7_131_1'} / ICML by Saunders C. (1998)
  132. 10.1007/978-3-540-28650-9_4 / Advanced Lectures on Machine Learning: ML Summer Schools 2003, Revised Lectures by Rasmussen C. E. (2004)
  133. 10.1063/1.4986787
  134. {'key': 'e_1_2_7_134_1', 'first-page': '1929', 'volume': '15', 'author': 'Srivastava N.', 'year': '2014', 'journal-title': 'J. Mach. Learn. Res.'} / J. Mach. Learn. Res. by Srivastava N. (2014)
  135. 10.1039/C9SC01992H
  136. {'journal-title': 'Machine Learning: Sci. Technol.', 'author': 'Tran K.', 'key': 'e_1_2_7_136_1'} / Machine Learning: Sci. Technol. by Tran K.
  137. 10.1038/nmat4395
  138. 10.1016/j.cossms.2016.07.002
  139. 10.1002/9781119148739.ch4
  140. 10.1038/s41524-017-0056-5
  141. 10.1103/PhysRevLett.120.145301
  142. 10.1021/acs.jpcc.9b03370
  143. 10.1063/1.3553717
  144. 10.1063/1.5019779
  145. 10.1038/s41524-019-0195-y
  146. 10.1038/nchem.1243
  147. 10.1186/1758-2946-1-8
  148. 10.1126/science.aau5631
  149. 10.1016/j.nanoen.2017.12.008
  150. 10.1021/acscatal.8b00689
  151. 10.1021/acscatal.9b02165
  152. 10.1021/acs.chemrev.5b00462
  153. 10.1016/j.chempr.2019.03.002
  154. 10.1039/C8CS00671G
  155. 10.1039/C6CS00328A
  156. 10.1016/j.nanoen.2017.05.022
  157. 10.1021/acscatal.9b00994
  158. 10.1039/C9CS00159J
  159. 10.1016/j.chempr.2018.10.010
  160. 10.1002/smtd.201800337
  161. 10.1039/C9QI00484J
  162. 10.1039/C6TA09875D
  163. 10.1016/j.trechm.2019.05.004
  164. {'volume-title': 'Basic Energy Sciences Advisory Committee', 'year': '2008', 'author': 'Hemminger J.', 'key': 'e_1_2_7_164_1'} / Basic Energy Sciences Advisory Committee by Hemminger J. (2008)
  165. {'volume-title': 'Basic Research Needs To Assure A Secure Energy Future: A Report from the Basic Energy Science Advisory Committee', 'year': '2003', 'author': 'Stringer J.', 'key': 'e_1_2_7_165_1'} / Basic Research Needs To Assure A Secure Energy Future: A Report from the Basic Energy Science Advisory Committee by Stringer J. (2003)
  166. 10.1021/jp1048887
  167. 10.1149/1.1856988
  168. 10.1126/sciadv.1501602
  169. 10.1021/acs.jpclett.5b00306
  170. 10.1021/acs.jpclett.9b01428
  171. 10.1021/acs.jpclett.6b01254
  172. 10.1038/s41524-018-0096-5
  173. 10.1021/jacs.8b00947
  174. 10.1021/cr020730k
  175. 10.1021/acs.chemrev.7b00488
  176. 10.1038/nchem.623
  177. 10.1038/nchem.367
  178. 10.1126/science.1135941
  179. 10.1126/science.aad8892
  180. 10.1103/PhysRevLett.81.2819
  181. 10.1016/j.jpowsour.2007.07.048
  182. 10.1126/science.1170051
  183. 10.1038/natrevmats.2016.64
  184. 10.1002/adma.201302753
  185. 10.1002/anie.201006768
  186. 10.1002/anie.201101287
  187. 10.1103/PhysRevLett.106.175502
  188. 10.1021/nn901850u
  189. 10.1126/science.1168049
  190. 10.1021/acssuschemeng.8b05654
  191. 10.1002/admi.201900592
  192. 10.1039/C8CP03801E
  193. 10.1002/aenm.201802269
  194. 10.1016/j.joule.2018.12.015
  195. 10.1016/j.jelechem.2006.11.008
  196. 10.1021/acs.jpcc.5b10071
  197. 10.1021/acscatal.9b02416
  198. 10.1016/j.nanoen.2016.04.009
  199. 10.1016/0013-4686(94)85172-7
  200. 10.1021/ja302668n
  201. 10.1021/jz201461p
  202. 10.1021/ja503782w
  203. 10.1021/acsenergylett.7b00152
  204. 10.1021/acscatal.7b01648
  205. 10.1038/s41467-018-08120-x
  206. 10.1021/acscatal.9b01899
  207. 10.1021/ja010963d
  208. 10.1021/acscatal.8b02120
  209. 10.1002/cssc.201500322
  210. 10.1039/C1CP22271F
  211. 10.1039/C9CP03187A
  212. 10.1021/acs.jpcc.5b08508
  213. 10.1021/acscatal.9b03903
  214. 10.1021/acsenergylett.9b00699
  215. 10.1039/C5CP07363D
  216. 10.1002/adma.201803498
  217. 10.1021/acscatal.8b03802
  218. 10.1016/j.nanoen.2019.04.092
  219. 10.1021/acscatal.9b00959
  220. 10.1021/jacs.9b03004
  221. 10.1021/jacs.8b13165
  222. 10.1021/acscatal.8b00905
  223. 10.1016/j.chempr.2018.10.007
  224. 10.1021/acscatal.8b05178
  225. 10.1021/acscatal.7b03597
  226. 10.1039/C6CP08003K
  227. 10.1126/science.aam9147
  228. 10.1021/acscentsci.6b00139
  229. 10.1126/science.aam9035
  230. 10.1021/acs.jpcc.9b08939
  231. 10.1021/acs.jctc.9b00717
  232. 10.1063/1.5021351
  233. 10.1038/nchem.2454
  234. 10.1021/acscatal.7b03531
  235. 10.1021/acscentsci.8b00419
  236. 10.1021/acs.jpcc.5b11616
  237. 10.1021/acscatal.7b03438
  238. 10.1103/PhysRevB.100.014105
  239. 10.1038/s41578-018-0005-z
  240. 10.1016/j.trechm.2019.02.007
  241. 10.1038/npjcompumats.2016.31
  242. 10.1063/1.5126597
  243. 10.1021/acscatal.9b03599
  244. 10.1063/1.4978500
  245. 10.1038/s41570-018-0121
  246. 10.1016/j.matt.2019.08.017
  247. 10.1016/S0169-4332(03)00919-X
  248. 10.1063/1.3272274
  249. 10.1524/zpch.1960.26.1_2.016
  250. 10.1021/acs.jpclett.6b00358
  251. 10.1126/science.aaf5050
  252. 10.1021/acs.jpcc.9b00194
Dates
Type When
Created 5 years, 5 months ago (March 20, 2020, 10:36 a.m.)
Deposited 1 year ago (Aug. 2, 2024, 12:36 p.m.)
Indexed 3 weeks, 3 days ago (July 30, 2025, 3:37 a.m.)
Issued 5 years, 5 months ago (March 20, 2020)
Published 5 years, 5 months ago (March 20, 2020)
Published Online 5 years, 5 months ago (March 20, 2020)
Published Print 4 years, 11 months ago (Sept. 1, 2020)
Funders 1
  1. National Research Foundation of Korea 10.13039/501100003725

    Region: Asia

    pri (Trusts, charities, foundations (both public and private))

    Labels3
    1. 한국연구재단이 창의적 연구와
    2. National Research Foundation (South Korea)
    3. NRF
    Awards4
    1. 2019M3D1A1079303
    2. 2018R1A2A2A14079326
    3. 2016M3D1A1021147
    4. 2019M3D3A1A01069099

@article{Gu_2020, title={Progress in Computational and Machine‐Learning Methods for Heterogeneous Small‐Molecule Activation}, volume={32}, ISSN={1521-4095}, url={http://dx.doi.org/10.1002/adma.201907865}, DOI={10.1002/adma.201907865}, number={35}, journal={Advanced Materials}, publisher={Wiley}, author={Gu, Geun Ho and Choi, Changhyeok and Lee, Yeunhee and Situmorang, Andres B. and Noh, Juhwan and Kim, Yong‐Hyun and Jung, Yousung}, year={2020}, month=mar }