Crossref journal-article
Wiley
Advanced Materials (311)
Abstract

AbstractMaterials properties are ultimately determined by the nature of the interactions between the atoms that form the material. On surfaces, the site‐specific spatial distribution of force and energy fields governs the phenomena encountered. This article reviews recent progress in the development of a measurement mode called three‐dimensional atomic force microscopy (3D‐AFM) that allows the dense, three‐dimensional mapping of these surface fields with atomic resolution. Based on noncontact atomic force microscopy, 3D‐AFM is able to provide more detailed information on surface properties than ever before, thanks to the simultaneous multi‐channel acquisition of complementary spatial data such as local energy dissipation and tunneling currents. By illustrating the results of experiments performed on graphite and pentacene, we explain how 3D‐AFM data acquisition works, what challenges have to be addressed in its realization, and what type of data can be extracted from the experiments. Finally, a multitude of potential applications are discussed, with special emphasis on chemical imaging, heterogeneous catalysis, and nanotribology.

Bibliography

Baykara, M. Z., Schwendemann, T. C., Altman, E. I., & Schwarz, U. D. (2010). Three‐Dimensional Atomic Force Microscopy – Taking Surface Imaging to the Next Level. Advanced Materials, 22(26–27), 2838–2853. Portico.

Authors 4
  1. Mehmet Z. Baykara (first)
  2. Todd C. Schwendemann (additional)
  3. Eric I. Altman (additional)
  4. Udo D. Schwarz (additional)
References 123 Referenced 68
  1. In some instances three‐dimensional imaging by AFM has been referred to as “atomic force tomography” or similar. We feel that this expression is not adequate as the word “tomography” is defined as “a method of producing a three‐dimensional image of the internal structure of a solid object (…︁)” (Merriam‐Webster Online Dictionary 2009 Edition). 3D‐AFM however does not result in information on theinternalforce field of the sample but only on thesurfaceforce (and energy) field and how it extends into vacuum as experienced by a sharp probe tip.
  2. 10.1103/PhysRevLett.56.930
  3. 10.1116/1.575441
  4. 10.1116/1.576520
  5. 10.1063/1.103677
  6. 10.1116/1.585195
  7. 10.1063/1.107348
  8. 10.1063/1.1144418
  9. 10.1063/1.100061
  10. 10.1063/1.342563
  11. 10.1063/1.101987
  12. 10.1088/0957-0233/4/7/009
  13. 10.1209/0295-5075/3/12/006
  14. 10.1063/1.102985
  15. 10.1088/0957-4484/1/2/003
  16. 10.1063/1.103950
  17. 10.1103/PhysRevLett.59.1942
  18. 10.1126/science.260.5113.1451
  19. 10.1103/PhysRevB.57.2477
  20. 10.1126/science.267.5194.68
  21. 10.1126/science.270.5242.1646
  22. 10.1007/978-3-642-56019-4
  23. 10.1007/978-3-642-01495-6
  24. 10.1063/1.347347
  25. 10.1016/S0167-5729(02)00077-8
  26. 10.1016/S0169-4332(98)00534-0
  27. 10.1103/PhysRevB.62.16944
  28. 10.1103/PhysRevB.77.045411
  29. 10.1143/JJAP.34.L145
  30. 10.1143/JJAP.34.L1086
  31. 10.1143/JJAP.39.L113
  32. 10.1103/PhysRevB.61.2837
  33. {'key': 'e_1_2_9_33_2', 'first-page': '1', 'author': 'Bammerlin M.', 'year': '1997', 'journal-title': 'Probe Microsc.'} / Probe Microsc. by Bammerlin M. (1997)
  34. 10.1209/epl/i1999-00477-3
  35. 10.1038/35102031
  36. 10.1103/PhysRevB.67.085402
  37. Note that this is even worse for scanning tunneling microscopy where images reflect planes of constant integrated joint density of states between the tip and sample as it is more difficult to correlate the integrated joint density of states with sites of strongest tip‐sample interaction than correlating planes of constant frequency shift with the same quantity.
  38. 10.1016/S0169-4332(98)00547-9
  39. 10.1063/1.124399
  40. 10.1103/PhysRevLett.83.4780
  41. 10.1063/1.1335546
  42. 10.1063/1.1667267
  43. 10.1103/PhysRevB.61.12678
  44. 10.1103/PhysRevLett.86.2597
  45. 10.1126/science.1057824
  46. 10.1103/PhysRevLett.92.146103
  47. 10.1063/1.2108112
  48. 10.1103/PhysRevLett.94.056101
  49. 10.1038/nature05530
  50. 10.1063/1.2775806
  51. 10.1103/PhysRevB.72.045431
  52. 10.1063/1.121434
  53. 10.1063/1.1639679
  54. 10.1063/1.1525056
  55. 10.1016/S0039-6028(03)00076-1
  56. 10.1103/PhysRevLett.97.136101
  57. 10.1063/1.2424432
  58. 10.1063/1.2739410
  59. 10.1103/PhysRevLett.101.156102
  60. 10.1103/PhysRevB.77.195424
  61. 10.1126/science.1150288
  62. 10.1038/nnano.2008.126
  63. 10.1088/0957-4484/20/26/264001
  64. Possible ways to speed up data acquisition compared to the example discussed earlier (90 h for a 256 × 256 point array) could include operation at higher resonances the use of sensors featuring higher resonance frequencies and the development of new electronic components and detection schemes that provide better signal‐to‐noise ratios.
  65. 10.1063/1.2842631
  66. 10.1038/nnano.2009.57
  67. 10.1126/science.1176210
  68. Sugimoto et al. [60]and Ternes et al. [61]applied simpler versions of this approach by collecting Δfdata line‐by‐line instead of image‐by‐image obtaining densex–zmaps. This approach however does not allow for post‐recording drift correction.
  69. 10.1088/0957-4484/20/26/264002
  70. 10.1038/nnano.2007.300
  71. 10.1038/nmat1849
  72. 10.1038/nature07094
  73. 10.1073/pnas.0703337104
  74. 10.1103/PhysRevB.56.6987
  75. 10.1103/PhysRevLett.92.126101
  76. 10.1103/PhysRevB.62.6967
  77. 10.1073/pnas.2134173100
  78. 10.1088/0957-4484/16/3/024
  79. 10.1103/PhysRevB.79.115440
  80. 10.1063/1.126067
  81. 10.1088/0957-4484/15/2/017
  82. The average attractive forces and force corrugations are ‐2.31 nN and ∼70 pN (a) ‐2.06 nN and ∼55 pN (b) ‐1.78 nN and ∼40 pN (c) and ‐1.58 nN and ∼20 pN (d) respectively. Note also that the origin of thez‐scale has been set to the height of the closest complete plane imaged and does not indicate a particular “absolute” distance from the surface.
  83. The average attractive energies and corrugations are ‐5.47 eV and 38 meV (a) ‐4.91 eV and 24 meV (b) ‐4.37 eV and 13 meV (c) and ‐4.00 eV and 8 meV (d) respectively.
  84. Note that the data given in Figure 5 has been acquired in the attractive regime while so far nanotribological stick‐slip experiments have only been carried out in repulsive contact. Nevertheless the fundamental process of stick‐slip is expected to remain the same in repulsive as well as in the attractive regime as long as the energy barriers between the potential minima are sufficiently deep compared to the lateral stiffness of the slider.
  85. 10.1103/PhysRevLett.80.2004
  86. 10.1021/bi00026a001
  87. 10.1063/1.1342033
  88. 10.1016/S0968-4328(03)00004-0
  89. 10.1007/s00339-002-1971-x
  90. 10.1063/1.1532840
  91. 10.1073/pnas.0903805106
  92. 10.1063/1.1999856
  93. 10.1063/1.2188867
  94. 10.1103/PhysRevLett.98.106101
  95. 10.1088/0957-4484/20/26/264008
  96. 10.1143/JJAP.48.08JA01
  97. 10.1021/la803448v
  98. 10.1103/PhysRevLett.87.265502
  99. 10.1103/PhysRevLett.100.236106
  100. 10.1021/ie50666a006
  101. 10.1103/PhysRevB.61.11151
  102. 10.1126/science.289.5478.422
  103. 10.1116/1.578015
  104. 10.1016/S0169-4332(98)00543-1
  105. 10.1088/0957-4484/17/7/S03
  106. 10.1088/0957-4484/17/14/015
  107. 10.1103/PhysRevB.76.205415
  108. 10.1126/science.286.5445.1719
  109. 10.1103/PhysRevB.70.245415
  110. 10.1103/PhysRevLett.94.026803
  111. 10.1103/PhysRevB.78.045416
  112. {'key': 'e_1_2_9_112_2', 'volume-title': 'Catalysis in Chemistry and Enzymology', 'author': 'Jencks W. P.', 'year': '1969'} / Catalysis in Chemistry and Enzymology by Jencks W. P. (1969)
  113. 10.1016/S0926-860X(96)00236-0
  114. 10.1126/science.1172273
  115. 10.1038/nnano.2009.215
  116. 10.1016/j.surfrep.2005.10.004
  117. 10.1016/j.surfrep.2005.10.003
  118. 10.1098/rsta.2007.2164
  119. 10.1088/0022-3727/41/12/123001
  120. 10.1073/pnas.182160599
  121. 10.1103/PhysRevB.79.195412
  122. M. Z.Baykara T. C.Schwendemann B. J.Albers N.Pilet E. I.Altman U. D.Schwarz in preparation.
  123. 10.1088/0957-4484/17/7/S01
Dates
Type When
Created 15 years, 4 months ago (April 9, 2010, 5:51 a.m.)
Deposited 2 years ago (Aug. 30, 2023, 1:28 a.m.)
Indexed 1 month, 2 weeks ago (July 19, 2025, 11:37 p.m.)
Issued 15 years, 1 month ago (July 20, 2010)
Published 15 years, 1 month ago (July 20, 2010)
Published Online 15 years, 1 month ago (July 21, 2010)
Published Print 15 years, 1 month ago (July 20, 2010)
Funders 0

None

@article{Baykara_2010, title={Three‐Dimensional Atomic Force Microscopy – Taking Surface Imaging to the Next Level}, volume={22}, ISSN={1521-4095}, url={http://dx.doi.org/10.1002/adma.200903909}, DOI={10.1002/adma.200903909}, number={26–27}, journal={Advanced Materials}, publisher={Wiley}, author={Baykara, Mehmet Z. and Schwendemann, Todd C. and Altman, Eric I. and Schwarz, Udo D.}, year={2010}, month=jul, pages={2838–2853} }