10.1002/adma.200901961
Crossref journal-article
Wiley
Advanced Materials (311)
Abstract

AbstractCross correlation between magnetism and electricity in a solid can host magnetoelectric effects, such as magnetic (electric) induction of polarization (magnetization). A key to attain the gigantic magnetoelectric response is to find the efficient magnetism–electricity coupling mechanisms. Among those, recently the emergence of spontaneous (ferroelectric) polarization in the insulating helimagnet or spiral‐spin structure was unraveled, as mediated by the spin‐exchange and spin–orbit interactions. The sign of the polarization depends on the helicity (spin rotation sense), while the polarization direction itself depends on further details of the mechanism and the underlying lattice symmetry. Here, we describe some prototypical examples of the spiral‐spin multiferroics, which enable some unconventional magnetoelectric control such as the magnetic‐field‐induced change of the polarization direction and magnitude as well as the electric‐field‐induced change of the spin helicity and magnetic domain.

Bibliography

Tokura, Y., & Seki, S. (2010). Multiferroics with Spiral Spin Orders. Advanced Materials, 22(14), 1554–1565. Portico.

Authors 2
  1. Yoshinori Tokura (first)
  2. Shinichiro Seki (additional)
References 84 Referenced 600
  1. {'key': 'e_1_2_7_1_2', 'first-page': '628', 'volume': '10', 'author': 'Dzyaloshinskii I. E.', 'year': '1959', 'journal-title': 'Sov. Phys. JETP'} / Sov. Phys. JETP by Dzyaloshinskii I. E. (1959)
  2. {'key': 'e_1_2_7_2_2', 'first-page': '708', 'volume': '11', 'author': 'Astrov D. N.', 'year': '1960', 'journal-title': 'Sov. Phys. JETP'} / Sov. Phys. JETP by Astrov D. N. (1960)
  3. 10.1038/nmat1805
  4. 10.1023/A:1020599728432
  5. 10.1063/1.1984690
  6. 10.1103/PhysRevLett.84.5620
  7. 10.1103/PhysRevLett.92.047401
  8. 10.1103/PhysRevLett.92.137401
  9. 10.1088/0022-3727/38/8/R01
  10. 10.1002/adma.200802849
  11. 10.1088/0953-8984/20/43/434220
  12. 10.1103/PhysRevLett.95.057205
  13. 10.1103/PhysRevB.73.094434
  14. 10.1088/0953-8984/8/15/016
  15. 10.1103/PhysRevLett.100.047601
  16. 10.1103/PhysRevLett.101.097205
  17. 10.1103/PhysRevLett.96.067601
  18. 10.1103/PhysRevB.76.054447
  19. 10.1038/nature02018
  20. 10.1103/PhysRevB.71.224425
  21. 10.1146/annurev.matsci.37.052506.084259
  22. 10.1038/nmat1804
  23. 10.1103/PhysRevB.76.184418
  24. 10.1103/PhysRevLett.96.097202
  25. 10.1103/PhysRevLett.98.147204
  26. 10.1103/PhysRevB.68.060403
  27. 10.1103/PhysRevLett.95.087206
  28. 10.1103/PhysRevLett.101.197207
  29. 10.1103/PhysRevLett.102.057604
  30. 10.1103/PhysRevLett.92.257201
  31. 10.1143/JPSJ.78.053704
  32. 10.1103/PhysRevLett.102.207208
  33. 10.1038/nmat2373
  34. 10.1103/PhysRevLett.95.087205
  35. 10.1103/PhysRevLett.97.097203
  36. 10.1103/PhysRevLett.98.057601
  37. 10.1103/PhysRevLett.100.127201
  38. 10.1143/JPSJ.76.023708
  39. 10.1103/PhysRevB.77.144101
  40. 10.1038/nmat2125
  41. 10.1103/PhysRevLett.96.207204
  42. 10.1103/PhysRevLett.102.067601
  43. 10.1143/JPSJ.48.1111
  44. 10.1143/JPSJ.77.043709
  45. 10.1103/PhysRevLett.94.137201
  46. 10.1126/science.1154507
  47. 10.1103/PhysRevB.73.220401
  48. 10.1103/PhysRevB.75.100403
  49. 10.1103/PhysRevLett.101.067204
  50. 10.1103/PhysRevB.78.140401
  51. 10.1103/PhysRevLett.98.267205
  52. 10.1038/nature02572
  53. 10.1038/nmat2469
  54. {'key': 'e_1_2_7_50_2', 'author': 'Kagawa F.', 'journal-title': 'Nat. Phys.'} / Nat. Phys. by Kagawa F.
  55. 10.1051/jphys:01964002505052801
  56. 10.1103/PhysRev.126.540
  57. 10.1103/PhysRevB.70.214434
  58. 10.1063/1.338520
  59. The tiny anomaly of temperature variation ofPis due to the lock‐in transition of the conical state atTC‐IC = 15 K (C–IC: commensurate–incommensurate transition).
  60. 10.1143/JPSJ.55.1350
  61. 10.1143/JPSJ.77.031010
  62. 10.1103/PhysRevB.79.180408
  63. 10.1143/JPSJ.76.073702
  64. 10.1143/JPSJ.48.1443
  65. 10.1051/jphys:01966002703-4021300
  66. 10.1103/PhysRevB.77.184402
  67. 10.1126/science.1166767
  68. S.Seki H.Murakawa Y.Onose Y.Tokura 2009 arXiv: 0906.0324v1.
  69. 10.1143/JPSJ.69.3513
  70. 10.1143/JPSJ.76.043709
  71. 10.1103/PhysRevB.70.174412
  72. 10.1103/PhysRevB.78.014101
  73. 10.1088/0953-8984/7/34/011
  74. 10.1088/0953-8984/2/19/014
  75. 10.1143/JPSJ.74.1561
  76. 10.1143/JPSJ.67.4026
  77. In general magnetically‐induced domains can be mutually converted by the symmetry operations that are broken by magnetic order. This analysis allows six possible multiferroic domains with different polarization directions for CuFe1−xGaxO2. For details see [61].
  78. 10.1103/PhysRevB.77.052401
  79. 10.1103/PhysRevB.80.104417
  80. 10.1103/PhysRevB.74.224444
  81. 10.1103/PhysRevB.78.024106
  82. 10.1103/PhysRevLett.101.037210
  83. 10.1103/PhysRevLett.101.037209
  84. Note that the symmetry‐based analysis described here only considers the local site symmetry on the magnetic ion. While this gives the necessary condition for the emergence of ferroelectricity the existence of more global symmetry (such as an inversion center between two magnetic layers or a glide plane) may often prevent the system from being polar.
Dates
Type When
Created 15 years, 8 months ago (Dec. 1, 2009, 10:04 a.m.)
Deposited 1 year, 10 months ago (Oct. 10, 2023, 10:22 p.m.)
Indexed 37 minutes ago (Aug. 27, 2025, 3:03 a.m.)
Issued 15 years, 4 months ago (April 12, 2010)
Published 15 years, 4 months ago (April 12, 2010)
Published Online 15 years, 4 months ago (April 12, 2010)
Published Print 15 years, 4 months ago (April 12, 2010)
Funders 0

None

@article{Tokura_2010, title={Multiferroics with Spiral Spin Orders}, volume={22}, ISSN={1521-4095}, url={http://dx.doi.org/10.1002/adma.200901961}, DOI={10.1002/adma.200901961}, number={14}, journal={Advanced Materials}, publisher={Wiley}, author={Tokura, Yoshinori and Seki, Shinichiro}, year={2010}, month=apr, pages={1554–1565} }