Crossref journal-article
Wiley
Advanced Materials (311)
Abstract

AbstractThere is an explosive interest in 1D nanostructured materials for biological sensors. Among these nanometer‐scale materials, single‐walled carbon nanotubes (SWNTs) offer the advantages of possible biocompatibility, size compatibility, and sensitivity towards minute electrical perturbations. In particular, because of these inherent qualities, changes in SWNT conductivity have been explored in order to study the interaction of biomolecules with SWNTs. This Review discusses these interactions, with a focus on carbon nanotube field‐effect transistors (NTFETs). Recent examples of applications of NTFET devices for detection of proteins, antibody–antigen assays, DNA hybridization, and enzymatic reactions involving glucose are summarized. Examples of complementary techniques, such as microscopy and spectroscopy, are covered as well.

Bibliography

Allen, B. L., Kichambare, P. D., & Star, A. (2007). Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors. Advanced Materials, 19(11), 1439–1451. Portico.

Authors 3
  1. B. L. Allen (first)
  2. P. D. Kichambare (additional)
  3. A. Star (additional)
References 114 Referenced 702
  1. 10.1126/science.1114397
  2. 10.1126/science.1067003
  3. 10.1021/ja001215b
  4. 10.1021/nl034372s
  5. 10.1002/smll.200500009
  6. 10.1007/s00216-005-3400-4
  7. 10.1126/science.298.5602.2407
  8. S. M. Sze Physics of Semiconductor Devices Wiley New York1981 p. 431.
  9. 10.1021/ac069419j
  10. 10.1126/science.1062711
  11. 10.1021/nl034853b
  12. 10.1038/nbt1138
  13. 10.1038/78941
  14. 10.1016/S0959-440X(03)00011-3
  15. 10.1073/pnas.0406159101
  16. 10.1021/nl034958e
  17. 10.1021/ja0503478
  18. 10.1038/354056a0
  19. 10.1038/363603a0
  20. 10.1038/363605a0
  21. Science of Fullerenes and Carbon Nanotubes(Eds: M. S. Dresselhaus G. Dresselhaus P. C. Eklund) Academic San Diego1996.
  22. Physical properties of carbon nanotubes(Eds: R. Saito G. Dresselhaus M. S. Dresselhaus) Imperial College Press London1999.
  23. 10.1126/science.1060379
  24. 10.1038/scientificamerican1200-62
  25. 10.1021/cr970102g
  26. 10.1007/3-540-39947-X_14
  27. Special Issue on Carbon Nanotubes Acc. Chem. Res.2002 35. (10.1021/ar010166k)
  28. 10.1038/29954
  29. 10.1063/1.122477
  30. 10.1063/1.1467702
  31. 10.1021/nl025577o
  32. 10.1021/nl025584c
  33. 10.1021/nl025639a
  34. 10.1126/science.1081294
  35. 10.1038/nature01797
  36. 10.1103/PhysRevLett.91.218301
  37. 10.1126/science.287.5453.622
  38. 10.1126/science.287.5459.1801
  39. 10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8
  40. 10.1021/nl034010k
  41. 10.1021/nl034061h
  42. 10.1002/elan.200302925
  43. 10.1002/adma.200400322
  44. 10.1063/1.1545166
  45. 10.1021/nl034220x
  46. 10.1063/1.1564291
  47. 10.1021/nl061231s
  48. 10.1063/1.2187945
  49. 10.1002/smll.200500120
  50. 10.1103/PhysRevB.66.073307
  51. 10.1103/PhysRevLett.89.216801
  52. 10.1103/PhysRevLett.89.106801
  53. 10.1063/1.1619222
  54. 10.1002/cphc.200400193
  55. 10.1002/elan.200403113
  56. 10.1039/b314481j
  57. 10.1007/s00604-005-0449-x
  58. 10.1007/s00604-005-0445-1
  59. 10.1002/elan.200503449
  60. 10.1007/s00216-006-0314-8
  61. Traditionally the molecular interactions are studied primarily through their interaction with electromagnetic radiation; methods include X‐ray UV‐vis IR and NMR spectroscopy. These methods provide unambiguous information about electronic and vibrational states in molecules through their interaction with the electrical field. Measurement of the electric fields using less expensive electroanalytical devices can provide yet another view on the same molecular phenomena.
  62. 10.1002/(SICI)1521-3773(19990712)38:13/14<1912::AID-ANIE1912>3.0.CO;2-2
  63. 10.1021/nl0349855
  64. 10.1038/nmat833
  65. 10.1021/ja050062v
  66. 10.1021/nl051861e
  67. 10.1021/ja015766t
  68. 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
  69. 10.1021/ar010160v
  70. 10.1002/chem.200304800
  71. 10.1002/chem.200204618
  72. 10.1071/CH03083
  73. 10.1126/science.282.5386.95
  74. 10.1002/adma.200401340
  75. 10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F
  76. 10.1016/S0009-2614(01)00490-0
  77. 10.1021/ja026104m
  78. 10.1021/ma020890y
  79. 10.1021/ma021417n
  80. 10.1021/ja010172b
  81. 10.1021/nl015692j
  82. 10.1021/ja038702m
  83. 10.1039/b302681g
  84. 10.1021/nl0340172
  85. 10.1073/pnas.0837064100
  86. 10.1021/ja053761g
  87. 10.1021/ja053094r
  88. 10.1021/nl034139u
  89. 10.1021/ac0511997
  90. 10.1021/jp053077o
  91. 10.1002/1521-3773(20020715)41:14<2508::AID-ANIE2508>3.0.CO;2-A
  92. 10.1021/ja029233b
  93. 10.1021/nl010065f
  94. 10.1039/b211365a
  95. 10.1021/ol0495826
  96. 10.1021/jp0101312
  97. 10.1021/ja0169670
  98. 10.1021/nl0340677
  99. 10.1021/nl025689f
  100. 10.1021/nl025874t
  101. 10.1038/nmat877
  102. 10.1126/science.1091911
  103. 10.1126/science.1120792
  104. 10.1002/adma.200500477
  105. 10.1021/nl051261f
  106. 10.1143/JJAP.43.L1558
  107. 10.1021/nl060613v
  108. 10.1073/pnas.0504146103
  109. 10.1093/qjmed/hch065
  110. 10.1007/s00277-005-1006-8
  111. 10.1021/nl048995x
  112. 10.1021/jp064371z
  113. 10.1126/science.1104635
  114. 10.1021/cr050569o
Dates
Type When
Created 18 years, 4 months ago (April 30, 2007, 9:48 a.m.)
Deposited 1 year, 9 months ago (Nov. 20, 2023, 7:10 p.m.)
Indexed 5 days, 5 hours ago (Aug. 31, 2025, 6:20 a.m.)
Issued 18 years, 4 months ago (April 30, 2007)
Published 18 years, 4 months ago (April 30, 2007)
Published Online 18 years, 4 months ago (April 30, 2007)
Published Print 18 years, 3 months ago (June 4, 2007)
Funders 0

None

@article{Allen_2007, title={Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors}, volume={19}, ISSN={1521-4095}, url={http://dx.doi.org/10.1002/adma.200602043}, DOI={10.1002/adma.200602043}, number={11}, journal={Advanced Materials}, publisher={Wiley}, author={Allen, B. L. and Kichambare, P. D. and Star, A.}, year={2007}, month=apr, pages={1439–1451} }