Abstract
AbstractA lot of recent interest has been focused on a new class of materials, the so‐called left‐handed materials (LHMs) or negative‐index materials, which exhibit highly unusual electromagnetic properties and hold promise for new device applications. These materials do not exist in nature and can only be fabricated artificially; for this reason, they are called metamaterials. Their unique properties are not determined by the fundamental physical properties of their constituents, but rather by the shape and distribution of the specific patterns included in them. Metamaterials can be designed to exhibit both electric and magnetic resonances that can be separately tuned to occur in frequency bands from megahertz to terahertz frequencies, and hopefully to the visible region of the electromagnetic spectrum. This article presents a short history of the field, describes the underlying physics, and reviews the experimental and theoretical status of the field at present. Many interesting questions on how to fabricate more isotropic LHMs, on how to push the operational frequency to optical wavelengths, how to reduce the losses, and how to incorporate active or nonlinear materials in LHMs remain to be explored further.
References
74
Referenced
184
10.1070/PU1968v010n04ABEH003699
10.1103/PhysRevLett.84.4184
10.1126/science.1058847
10.1109/22.798002
10.1103/PhysRevLett.76.4773
10.1088/0953-8984/10/22/007
10.1126/science.291.5505.849
10.1103/PhysRevLett.85.3966
10.1126/science.1096796
{'key': 'e_1_2_1_11_2', 'first-page': '37', 'author': 'Smith D. R.', 'year': '2004', 'journal-title': 'Phys. Today'}
/ Phys. Today by Smith D. R. (2004)10.1088/0034-4885/68/2/R06
10.1063/1.1343489
10.1063/1.1492009
10.1063/1.1695439
10.1016/j.photonics.2004.07.005
10.1103/PhysRevB.70.201101
10.1364/OL.29.002623
10.1364/OPEX.12.005896
10.1103/PhysRevB.70.205125
10.1103/PhysRevB.71.085106
10.1063/1.1888051
10.1126/science.1094025
10.1126/science.1105371
10.1364/OL.30.001348
10.1103/PhysRevLett.95.203901
10.1002/adma.200500804
10.1364/OL.30.003198
10.1126/science.1108759
10.1126/science.1110900
10.1088/1464-4258/7/2/002
10.1103/PhysRevE.71.036617
10.1103/PhysRevB.62.10696
10.1103/PhysRevB.65.201104
10.1103/PhysRevB.68.045115
10.1103/PhysRevLett.90.107402
10.1103/PhysRevB.67.235107
10.1103/PhysRevB.72.165112
10.1038/423604b
10.1103/PhysRevLett.91.207401
10.1038/426404a
10.1103/PhysRevLett.92.127401
10.1063/1.1787959
10.1063/1.1927712
10.1063/1.1728304
10.1103/PhysRevLett.93.073902
10.1109/LPT.2005.846477
10.1103/PhysRevB.53.6318
10.1103/PhysRevB.66.155411
10.1142/S0218863502000833
10.1364/OE.11.000735
10.1103/PhysRevLett.94.037402
10.1103/PhysRevLett.95.137404
10.1364/OL.30.003356
10.1038/nature04242
- In lossy materials it is possible for the real part ofnto be negative without the real parts of μ and ϵ simultaneously being negative. This is the case in the recent work of Zhang et al. [40b]. This can happen if the imaginary parts ofϵandμare sufficiently large because in a lossy materialn = n′ + in″ and alson = ϵzand$ z = {\sqrt \mu / \varepsilon} $. After some algebra we obtainn′ = ϵ′z′–ϵ″z″ and$ z = {\sqrt ( \mu \prime \varepsilon \prime + \mu \prime \prime \varepsilon \prime \prime) / \varepsilon^2 + i ( \mu \prime \prime \varepsilon \prime - \mu \prime \varepsilon \prime \prime) / \varepsilon^2} $ so it is possible to haven′ < 0 provided that ϵ″z″ > ϵ′z′. In this scenario however the imaginary parts lead to dominant losses such that we have a transmission gap with some negative phase shift rather than LH transmission (with some losses). This type of negativenshould not be considered LH behavior. In our experiments [54 55] although we have considerably large imaginary parts the behavior is still dominated by the negative real part ofnat the high‐frequency side where we find the LH behavior.
10.1103/PhysRevB.49.11080
10.1088/0953-8984/14/15/317
10.1063/1.1775291
10.1103/PhysRevB.67.035109
10.1103/PhysRevLett.91.037401
10.1103/PhysRevE.69.016617
10.1063/1.1787612
10.1103/PhysRevLett.90.107401
10.1103/PhysRevLett.93.107402
10.1103/PhysRevB.65.195104
10.1103/PhysRevE.68.065602
10.1103/PhysRevE.70.048603
10.1103/PhysRevB.71.121103
10.1103/PhysRevB.71.245105
10.1103/PhysRevLett.95.223902
10.1063/1.1567454
10.1103/PhysRevLett.90.137401
10.1103/PhysRevB.73.041101
10.1063/1.2208264
Dates
Type | When |
---|---|
Created | 19 years, 1 month ago (July 11, 2006, 11:17 a.m.) |
Deposited | 1 year, 10 months ago (Oct. 17, 2023, 9:18 p.m.) |
Indexed | 3 days, 21 hours ago (Aug. 23, 2025, 9:23 p.m.) |
Issued | 19 years, 1 month ago (July 11, 2006) |
Published | 19 years, 1 month ago (July 11, 2006) |
Published Online | 19 years, 1 month ago (July 11, 2006) |
Published Print | 19 years ago (Aug. 4, 2006) |
@article{Soukoulis_2006, title={Negative‐Index Materials: New Frontiers in Optics}, volume={18}, ISSN={1521-4095}, url={http://dx.doi.org/10.1002/adma.200600106}, DOI={10.1002/adma.200600106}, number={15}, journal={Advanced Materials}, publisher={Wiley}, author={Soukoulis, C. M. and Kafesaki, M. and Economou, E. N.}, year={2006}, month=jul, pages={1941–1952} }