Crossref journal-article
Wiley
Advanced Materials (311)
Abstract

AbstractA lot of recent interest has been focused on a new class of materials, the so‐called left‐handed materials (LHMs) or negative‐index materials, which exhibit highly unusual electromagnetic properties and hold promise for new device applications. These materials do not exist in nature and can only be fabricated artificially; for this reason, they are called metamaterials. Their unique properties are not determined by the fundamental physical properties of their constituents, but rather by the shape and distribution of the specific patterns included in them. Metamaterials can be designed to exhibit both electric and magnetic resonances that can be separately tuned to occur in frequency bands from megahertz to terahertz frequencies, and hopefully to the visible region of the electromagnetic spectrum. This article presents a short history of the field, describes the underlying physics, and reviews the experimental and theoretical status of the field at present. Many interesting questions on how to fabricate more isotropic LHMs, on how to push the operational frequency to optical wavelengths, how to reduce the losses, and how to incorporate active or nonlinear materials in LHMs remain to be explored further.

Bibliography

Soukoulis, C. M., Kafesaki, M., & Economou, E. N. (2006). Negative‐Index Materials: New Frontiers in Optics. Advanced Materials, 18(15), 1941–1952. Portico.

Authors 3
  1. C. M. Soukoulis (first)
  2. M. Kafesaki (additional)
  3. E. N. Economou (additional)
References 74 Referenced 184
  1. 10.1070/PU1968v010n04ABEH003699
  2. 10.1103/PhysRevLett.84.4184
  3. 10.1126/science.1058847
  4. 10.1109/22.798002
  5. 10.1103/PhysRevLett.76.4773
  6. 10.1088/0953-8984/10/22/007
  7. 10.1126/science.291.5505.849
  8. 10.1103/PhysRevLett.85.3966
  9. 10.1126/science.1096796
  10. {'key': 'e_1_2_1_11_2', 'first-page': '37', 'author': 'Smith D. R.', 'year': '2004', 'journal-title': 'Phys. Today'} / Phys. Today by Smith D. R. (2004)
  11. 10.1088/0034-4885/68/2/R06
  12. 10.1063/1.1343489
  13. 10.1063/1.1492009
  14. 10.1063/1.1695439
  15. 10.1016/j.photonics.2004.07.005
  16. 10.1103/PhysRevB.70.201101
  17. 10.1364/OL.29.002623
  18. 10.1364/OPEX.12.005896
  19. 10.1103/PhysRevB.70.205125
  20. 10.1103/PhysRevB.71.085106
  21. 10.1063/1.1888051
  22. 10.1126/science.1094025
  23. 10.1126/science.1105371
  24. 10.1364/OL.30.001348
  25. 10.1103/PhysRevLett.95.203901
  26. 10.1002/adma.200500804
  27. 10.1364/OL.30.003198
  28. 10.1126/science.1108759
  29. 10.1126/science.1110900
  30. 10.1088/1464-4258/7/2/002
  31. 10.1103/PhysRevE.71.036617
  32. 10.1103/PhysRevB.62.10696
  33. 10.1103/PhysRevB.65.201104
  34. 10.1103/PhysRevB.68.045115
  35. 10.1103/PhysRevLett.90.107402
  36. 10.1103/PhysRevB.67.235107
  37. 10.1103/PhysRevB.72.165112
  38. 10.1038/423604b
  39. 10.1103/PhysRevLett.91.207401
  40. 10.1038/426404a
  41. 10.1103/PhysRevLett.92.127401
  42. 10.1063/1.1787959
  43. 10.1063/1.1927712
  44. 10.1063/1.1728304
  45. 10.1103/PhysRevLett.93.073902
  46. 10.1109/LPT.2005.846477
  47. 10.1103/PhysRevB.53.6318
  48. 10.1103/PhysRevB.66.155411
  49. 10.1142/S0218863502000833
  50. 10.1364/OE.11.000735
  51. 10.1103/PhysRevLett.94.037402
  52. 10.1103/PhysRevLett.95.137404
  53. 10.1364/OL.30.003356
  54. 10.1038/nature04242
  55. In lossy materials it is possible for the real part ofnto be negative without the real parts of μ and ϵ simultaneously being negative. This is the case in the recent work of Zhang et al. [40b]. This can happen if the imaginary parts ofϵandμare sufficiently large because in a lossy materialn = n′ + in″ and alson = ϵzand$ z = {\sqrt \mu / \varepsilon} $. After some algebra we obtainn′ = ϵ′z′–ϵ″z″ and$ z = {\sqrt ( \mu \prime \varepsilon \prime + \mu \prime \prime \varepsilon \prime \prime) / \varepsilon^2 + i ( \mu \prime \prime \varepsilon \prime - \mu \prime \varepsilon \prime \prime) / \varepsilon^2} $ so it is possible to haven′ < 0 provided that ϵ″z″ > ϵ′z′. In this scenario however the imaginary parts lead to dominant losses such that we have a transmission gap with some negative phase shift rather than LH transmission (with some losses). This type of negativenshould not be considered LH behavior. In our experiments [54 55] although we have considerably large imaginary parts the behavior is still dominated by the negative real part ofnat the high‐frequency side where we find the LH behavior.
  56. 10.1103/PhysRevB.49.11080
  57. 10.1088/0953-8984/14/15/317
  58. 10.1063/1.1775291
  59. 10.1103/PhysRevB.67.035109
  60. 10.1103/PhysRevLett.91.037401
  61. 10.1103/PhysRevE.69.016617
  62. 10.1063/1.1787612
  63. 10.1103/PhysRevLett.90.107401
  64. 10.1103/PhysRevLett.93.107402
  65. 10.1103/PhysRevB.65.195104
  66. 10.1103/PhysRevE.68.065602
  67. 10.1103/PhysRevE.70.048603
  68. 10.1103/PhysRevB.71.121103
  69. 10.1103/PhysRevB.71.245105
  70. 10.1103/PhysRevLett.95.223902
  71. 10.1063/1.1567454
  72. 10.1103/PhysRevLett.90.137401
  73. 10.1103/PhysRevB.73.041101
  74. 10.1063/1.2208264
Dates
Type When
Created 19 years, 1 month ago (July 11, 2006, 11:17 a.m.)
Deposited 1 year, 10 months ago (Oct. 17, 2023, 9:18 p.m.)
Indexed 3 days, 21 hours ago (Aug. 23, 2025, 9:23 p.m.)
Issued 19 years, 1 month ago (July 11, 2006)
Published 19 years, 1 month ago (July 11, 2006)
Published Online 19 years, 1 month ago (July 11, 2006)
Published Print 19 years ago (Aug. 4, 2006)
Funders 0

None

@article{Soukoulis_2006, title={Negative‐Index Materials: New Frontiers in Optics}, volume={18}, ISSN={1521-4095}, url={http://dx.doi.org/10.1002/adma.200600106}, DOI={10.1002/adma.200600106}, number={15}, journal={Advanced Materials}, publisher={Wiley}, author={Soukoulis, C. M. and Kafesaki, M. and Economou, E. N.}, year={2006}, month=jul, pages={1941–1952} }