10.1002/adma.19940060504
Crossref journal-article
Wiley
Advanced Materials (311)
Abstract

AbstractThe necessity for a rational interpretation of scanning tunneling microscopy (STM) and atomic force microscopy (AFM) images is demonstrated by our recent STM/AFM studies of layered transition‐metal chalcogenides, layered transition‐metal halides, organic conducting salts, and alkanes adsorbed on graphite. To a first approximation, the STM image of a surface is described by the partial density plot ρ(r0, ef) of the surface, and the AFM image by the total density plot ρ(r0). The contribution of an atom to the ρ(r0, ef) plot increases with decreasing distance to the tip and with increasing electronic contribution to the energy levels around the Fermi level. Since the atoms that protrude more do not necessarily make greater contributions to the energy levels near the Fermi level, it is difficult to achieve a rational interpretation of STM images unless appropriate partial density plots are calculated. For a variety of layered compounds, the STM and AFM images are well simulated by the ρ(r0, ef) and ρ(r0) plots calculated by the extended Hückel tight‐binding electronic band structure method. Partial and total density plot calculations provide not only a basis for a rational interpretation of ideal STM and AFM images but also a step toward systematic studies of how tip–surface interactions and tunneling conditions affect the images.

Bibliography

Magonov, S. N., & Whangbo, M. (1994). Interpreting STM and AFM Images. Advanced Materials, 6(5), 355–371. Portico.

Authors 2
  1. Sergei N. Magonov (first)
  2. Myung‐Hwan Whangbo (additional)
References 75 Referenced 99
  1. 10.1103/PhysRevLett.49.57
  2. 10.1002/anie.198706061
  3. 10.1103/PhysRevLett.56.930
  4. 10.1063/1.338189
  5. 10.1007/978-94-015-7871-4_10
  6. 10.1007/978-3-642-97363-5
  7. {'key': 'e_1_2_1_3_5', 'volume-title': 'Scanning Tunneling Microscopy: Theory and Application', 'author': 'Bonnel D.', 'year': '1993'} / Scanning Tunneling Microscopy: Theory and Application by Bonnel D. (1993)
  8. 10.1103/PhysRevB.31.805
  9. (b)J.Tersoff in Ref. [3b] p77.
  10. 10.1007/978-94-010-1433-5
  11. {'key': 'e_1_2_1_6_2', 'volume-title': 'Organic Superconductors', 'author': 'Williams J. M.', 'year': '1992'} / Organic Superconductors by Williams J. M. (1992)
  12. 10.1002/9780470166369.ch2
  13. 10.1080/05704929308021499
  14. 10.1021/ja00021a001
  15. 10.1103/PhysRevB.46.4917
  16. 10.1021/ja00059a053
  17. 10.1021/ja00062a048
  18. 10.1021/j100120a031
  19. 10.1021/cm00031a024
  20. {'key': 'e_1_2_1_9_2', 'first-page': '439', 'volume': '17', 'author': 'Bar G.', 'year': '1993', 'journal-title': 'New J. Chem.'} / New J. Chem. by Bar G. (1993)
  21. 10.1021/j100138a017
  22. 10.1016/0379-6779(94)90203-8
  23. 10.1016/0379-6779(94)90307-7
  24. 10.1002/adma.19930051106
  25. 10.1002/adma.19930051107
  26. 10.1021/ja00487a020
  27. 10.1103/PhysRevB.48.5675
  28. 10.1021/ja00177a007
  29. 10.1021/ja00031a020
  30. 10.1063/1.350351
  31. 10.1126/science.255.5040.64
  32. 10.1002/adma.19930050609
  33. 10.1021/la00035a008
  34. 10.1088/0953-8984/1/51/001
  35. 10.1103/PhysRevB.34.1388
  36. 10.1080/00018738800101439
  37. 10.1103/PhysRevLett.60.1418
  38. 10.1103/PhysRevB.43.13590
  39. 10.1143/JPSJ.56.2875
  40. 10.1016/0304-3991(92)90252-F
  41. 10.1016/0304-3991(92)90253-G
  42. 10.1063/1.103535
  43. 10.1063/1.98635
  44. 10.1103/PhysRevB.37.4292
  45. 10.1111/j.1365-2818.1988.tb01416.x
  46. 10.1021/ar00006a003
  47. 10.1103/PhysRevB.42.9255
  48. 10.1002/anie.199005371
  49. 10.1021/ja00050a044
  50. 10.1016/0378-4363(80)90209-0
  51. 10.1126/science.260.5113.1451
  52. 10.1021/j100130a032
  53. W.Liang M.‐H.Whangbo M.Evain L.Monconduit R.Brec H.Bengel H.‐J.Cantow S. N.Magonov Chem. Mater. in press.
  54. 10.1116/1.577023
  55. 10.1016/0379-6779(91)91780-E
  56. 10.1016/0039-6028(91)90235-K
  57. 10.1103/PhysRevB.43.13590
  58. 10.1016/0304-3991(92)90394-Y
  59. 10.1126/science.256.5059.1012
  60. 10.1103/PhysRevB.47.4802
  61. 10.1007/978-3-642-75424-1_57
  62. 10.1002/anie.199212981
  63. 10.1063/1.104234
  64. 10.1103/PhysRevLett.66.2096
  65. 10.1016/0039-6028(93)90844-A
  66. 10.1103/PhysRevLett.57.444
  67. 10.1103/PhysRevB.34.9015
  68. 10.1016/0039-6028(89)90014-9
  69. 10.1116/1.585194
  70. {'key': 'e_1_2_1_33_2', 'first-page': '1166', 'volume': '49', 'author': 'Smith D. P. E.', 'year': '1986', 'journal-title': 'Phys. Lett.'} / Phys. Lett. by Smith D. P. E. (1986)
  71. 10.1063/1.103535
  72. 10.1116/1.575443
  73. 10.1116/1.585550
  74. M.‐H.Whangbo W.Liang J.Ren S. N.Magonov A.Wawkuschewski unpublished.
  75. 10.1063/1.104611
Dates
Type When
Created 20 years, 8 months ago (Dec. 29, 2004, 12:55 a.m.)
Deposited 1 year, 9 months ago (Nov. 20, 2023, 6:17 p.m.)
Indexed 1 year ago (Sept. 2, 2024, 12:29 p.m.)
Issued 31 years, 4 months ago (May 1, 1994)
Published 31 years, 4 months ago (May 1, 1994)
Published Online 20 years, 11 months ago (Sept. 15, 2004)
Published Print 31 years, 4 months ago (May 1, 1994)
Funders 0

None

@article{Magonov_1994, title={Interpreting STM and AFM Images}, volume={6}, ISSN={1521-4095}, url={http://dx.doi.org/10.1002/adma.19940060504}, DOI={10.1002/adma.19940060504}, number={5}, journal={Advanced Materials}, publisher={Wiley}, author={Magonov, Sergei N. and Whangbo, Myung‐Hwan}, year={1994}, month=may, pages={355–371} }