Crossref journal-article
Wiley
Advanced Functional Materials (311)
Abstract

Here, the employment of multilayer perceptrons, a type of artificial neural network, is proposed as part of a computational funneling procedure for high‐throughput organic materials design. Through the use of state of the art algorithms and a large amount of data extracted from the Harvard Clean Energy Project, it is demonstrated that these methods allow a great reduction in the fraction of the screening library that is actually calculated. Neural networks can reproduce the results of quantum‐chemical calculations with a large level of accuracy. The proposed approach allows to carry out large‐scale molecular screening projects with less computational time. This, in turn, allows for the exploration of increasingly large and diverse libraries.

Bibliography

Pyzer‐Knapp, E. O., Li, K., & Aspuru‐Guzik, A. (2015). Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery. Advanced Functional Materials, 25(41), 6495–6502. Portico.

Authors 3
  1. Edward O. Pyzer‐Knapp (first)
  2. Kewei Li (additional)
  3. Alan Aspuru‐Guzik (additional)
References 52 Referenced 179
  1. 10.1039/c4sc00095a
  2. 10.1038/nature12909
  3. 10.1039/C3EE42756K
  4. 10.1016/j.jpowsour.2009.09.024
  5. 10.6026/97320630003014
  6. 10.1038/nature03197
  7. 10.1021/jm400870h
  8. 10.1039/C4CP00547C
  9. 10.1021/ja9061344
  10. 10.1002/wcms.1104
  11. 10.1146/annurev-matsci-070214-020823
  12. 10.1021/ci9003865
  13. 10.1021/ci00068a023
  14. 10.2174/138620708785739899
  15. 10.1021/ci3003039
  16. 10.1021/ci0500132
  17. 10.1021/ci400187y
  18. 10.1021/ci4005805
  19. 10.1088/1367-2630/15/9/095003
  20. 10.1021/acs.jctc.5b00099
  21. 10.2533/chimia.2015.182
  22. {'volume-title': 'Gaussian Processes for Machine Learning', 'year': '2006', 'author': 'Rasmussen C. E.', 'key': 'e_1_2_7_22_1'} / Gaussian Processes for Machine Learning by Rasmussen C. E. (2006)
  23. E. O.Pyzer‐Knapp C.Suh R. P.Adams A.Aspuru‐Guzik unpublished.
  24. G.Simm E. O.Pyzer‐Knapp A.Aspuru‐Guzik unpublished.
  25. 10.1088/0954-898X_6_3_011
  26. 10.1037/h0042519
  27. 10.1016/S0003-2670(00)80865-X
  28. {'key': 'e_1_2_7_28_1', 'first-page': '114', 'volume-title': 'Proc. IEEE‐INNS‐ENNS Int. Joint Conf. Neural Networks IJCNN 2000', 'author': 'Lawrence S.', 'year': '2000'} / Proc. IEEE‐INNS‐ENNS Int. Joint Conf. Neural Networks IJCNN 2000 by Lawrence S. (2000)
  29. 10.1016/S0893-6080(98)00010-0
  30. 10.1016/B978-1-4832-1446-7.50035-2
  31. {'key': 'e_1_2_7_31_1', 'first-page': '177', 'volume-title': 'Proc. COMPSTAT', 'author': 'Bottou L.', 'year': '2010'} / Proc. COMPSTAT by Bottou L. (2010)
  32. G.Hinton T.Tielman Lecture 6.5 – rmsprop COURSERA: Neural Networks for Machine Learning.
  33. T.Schaul I.Antonoglou D.Silver 2013 arXiv:1406.1231.
  34. {'key': 'e_1_2_7_34_1', 'first-page': '693', 'volume-title': 'Advances in Neural Information Processing Systems 24', 'author': 'Recht B.', 'year': '2011'} / Advances in Neural Information Processing Systems 24 by Recht B. (2011)
  35. {'key': 'e_1_2_7_35_1', 'first-page': '571', 'volume-title': '11th USENIX Symp. Oper. Syst. Design Implementation (OSDI 14)', 'author': 'Chilimbi T.', 'year': '2014'} / 11th USENIX Symp. Oper. Syst. Design Implementation (OSDI 14) by Chilimbi T. (2014)
  36. 10.1002/adma.200501717
  37. {'key': 'e_1_2_7_37_1', 'first-page': '440', 'volume-title': 'Advances in Neural Information Processing Systems 25', 'author': 'Montavon G.', 'year': '2012'} / Advances in Neural Information Processing Systems 25 by Montavon G. (2012)
  38. 10.1103/PhysRevLett.108.058301
  39. {'journal-title': 'RDKit: Open‐Source Cheminformatics', 'author': 'Landrum G.', 'key': 'e_1_2_7_39_1'} / RDKit: Open‐Source Cheminformatics by Landrum G.
  40. 10.1021/ci00046a002
  41. 10.1021/ci010132r
  42. 10.1021/ci100050t
  43. 10.1021/ci00054a008
  44. 10.1177/1087057105281365
  45. 10.1080/00268976.2014.952696
  46. 10.1103/PhysRevB.33.8822
  47. 10.1103/PhysRevA.38.3098
  48. 10.1039/b508541a
  49. {'journal-title': 'MAML – Molecular Applied Machine Learning.', 'author': 'Pyzer‐Knapp E. O.', 'key': 'e_1_2_7_49_1'} / MAML – Molecular Applied Machine Learning. by Pyzer‐Knapp E. O.
  50. G. E.Dahl N.Jaitly R.Salakhutdinov 2014 arXiv:1406.1231.
  51. 10.1021/jz200866s
  52. World Community Grid http://www.worldcommunitygrid.org/. (accessed February2015)
Dates
Type When
Created 9 years, 11 months ago (Sept. 18, 2015, 8:40 a.m.)
Deposited 1 year, 10 months ago (Oct. 6, 2023, 12:03 a.m.)
Indexed 1 day, 17 hours ago (Aug. 21, 2025, 1:39 p.m.)
Issued 9 years, 11 months ago (Sept. 18, 2015)
Published 9 years, 11 months ago (Sept. 18, 2015)
Published Online 9 years, 11 months ago (Sept. 18, 2015)
Published Print 9 years, 9 months ago (Nov. 1, 2015)
Funders 2
  1. Department of Energy 10.13039/100000015 U.S. Department of Energy

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards1
    1. DE-SC0008733
  2. Harvard College Research Plan

@article{Pyzer_Knapp_2015, title={Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery}, volume={25}, ISSN={1616-3028}, url={http://dx.doi.org/10.1002/adfm.201501919}, DOI={10.1002/adfm.201501919}, number={41}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Pyzer‐Knapp, Edward O. and Li, Kewei and Aspuru‐Guzik, Alan}, year={2015}, month=sep, pages={6495–6502} }