Crossref journal-article
Wiley
Advanced Functional Materials (311)
Abstract

The dielectric and piezoelectric properties of ferroelectric polycrystalline materials have long been known to be strong functions of grain size and extrinsic effects such as domain wall motion. In BaTiO3, for example, it has been observed for several decades that the piezoelectric and dielectric properties are maximized at intermediate grain sizes (≈1 μm) and different theoretical models have been introduced to describe the physical origin of this effect. Here, using in situ, high‐energy X‐ray diffraction during application of electric fields, it is shown that 90° domain wall motion during both strong (above coercive) and weak (below coercive) electric fields is greatest at these intermediate grain sizes, correlating with the enhanced permittivity and piezoelectric properties observed in BaTiO3. This result validates the long‐standing theory in attributing the size effects in polycrystalline BaTiO3 to domain wall displacement. It is now empirically established that a doubling or more in the piezoelectric and dielectric properties of polycrystalline ferroelectric materials can be achieved through domain wall displacement effects; such mechanisms are suggested for use in the design of new ferroelectric materials with enhanced properties.

Bibliography

Ghosh, D., Sakata, A., Carter, J., Thomas, P. A., Han, H., Nino, J. C., & Jones, J. L. (2013). Domain Wall Displacement is the Origin of Superior Permittivity and Piezoelectricity in BaTiO3 at Intermediate Grain Sizes. Advanced Functional Materials, 24(7), 885–896. Portico.

Authors 7
  1. Dipankar Ghosh (first)
  2. Akito Sakata (additional)
  3. Jared Carter (additional)
  4. Pam A. Thomas (additional)
  5. Hyuksu Han (additional)
  6. Juan C. Nino (additional)
  7. Jacob L. Jones (additional)
References 61 Referenced 189
  1. 10.1038/nature01501
  2. 10.1126/science.1098252
  3. 10.1103/PhysRevB.70.024107
  4. 10.1103/PhysRevB.73.064114
  5. 10.1088/0022-3719/7/17/024
  6. 10.1016/j.actamat.2012.06.015
  7. 10.1111/j.1151-2916.1966.tb13144.x
  8. 10.1111/j.1151-2916.1966.tb13145.x
  9. 10.1063/1.336051
  10. 10.1143/JJAP.47.7607
  11. 10.1143/JJAP.48.09KC01
  12. 10.1016/0022-3697(96)00019-4
  13. 10.1016/j.jeurceramsoc.2006.02.005
  14. 10.1080/00150190390211972
  15. 10.1063/1.3428423
  16. 10.1063/1.322330
  17. {'key': 'e_1_2_6_17_1', 'first-page': '14', 'volume-title': 'Proceedings of the 9th IEEE ISAF meeting', 'author': 'Bell A. J.', 'year': '1994'} / Proceedings of the 9th IEEE ISAF meeting by Bell A. J. (1994)
  18. 10.1080/00150191003697179
  19. 10.1080/00150198308227857
  20. {'key': 'e_1_2_6_20_1', 'first-page': '335', 'volume': '10', 'author': 'Miclea C.', 'year': '2007', 'journal-title': 'Romanian J. Info. Sci. Technol.'} / Romanian J. Info. Sci. Technol. by Miclea C. (2007)
  21. 10.1143/JJAP.45.7405
  22. 10.1080/00150198408215837
  23. 10.1063/1.1722606
  24. 10.1016/S1359-6454(01)00025-8
  25. 10.1063/1.1787590
  26. 10.1063/1.1849821
  27. 10.1016/j.actamat.2006.10.046
  28. 10.1063/1.2999623
  29. 10.1016/j.actamat.2009.11.052
  30. 10.1111/j.1551-2916.2010.04240.x
  31. 10.1103/PhysRevB.86.024104
  32. 10.1111/j.1551-2916.2012.05221.x
  33. 10.1016/j.jeurceramsoc.2011.03.035
  34. 10.1080/00150198708016967
  35. 10.1103/PhysRevB.54.3158
  36. 10.1063/1.1957130
  37. 10.1063/1.349421
  38. 10.1063/1.354457
  39. 10.1063/1.115572
  40. 10.1007/BF00584864
  41. 10.1103/PhysRevB.31.5984
  42. 10.1088/0022-3727/39/24/029
  43. 10.1143/JJAP.34.6149
  44. 10.1088/0953-8984/19/47/476212
  45. 10.1103/PhysRevLett.108.177601
  46. 10.1103/PhysRev.91.513
  47. 10.1103/PhysRev.112.413
  48. 10.1142/S1793604710000889
  49. 10.1063/1.3073716
  50. 10.1016/j.physleta.2005.12.076
  51. 10.1111/j.1551-2916.2009.03218.x
  52. 10.1111/j.1551-2916.2009.03219.x
  53. 10.1063/1.2338756
  54. {'key': 'e_1_2_6_54_1', 'volume-title': 'Ferroelectric ceramics: tailoring properties for specific applications, Ferroelectric Ceramics', 'author': 'Cross L. E.', 'year': '1993'} / Ferroelectric ceramics: tailoring properties for specific applications, Ferroelectric Ceramics by Cross L. E. (1993)
  55. 10.1088/0034-4885/61/9/002
  56. 10.1063/1.342059
  57. 10.1063/1.355874
  58. 10.1088/0022-3719/11/15/031
  59. 10.1063/1.365981
  60. 10.1088/0953-8984/9/23/018
  61. 10.1080/07315179108203316
Dates
Type When
Created 11 years, 11 months ago (Sept. 3, 2013, 12:50 p.m.)
Deposited 1 year, 10 months ago (Oct. 16, 2023, 2:43 a.m.)
Indexed 1 day, 20 hours ago (Aug. 19, 2025, 7:06 a.m.)
Issued 11 years, 11 months ago (Sept. 3, 2013)
Published 11 years, 11 months ago (Sept. 3, 2013)
Published Online 11 years, 11 months ago (Sept. 3, 2013)
Published Print 11 years, 6 months ago (Feb. 1, 2014)
Funders 0

None

@article{Ghosh_2013, title={Domain Wall Displacement is the Origin of Superior Permittivity and Piezoelectricity in BaTiO3 at Intermediate Grain Sizes}, volume={24}, ISSN={1616-3028}, url={http://dx.doi.org/10.1002/adfm.201301913}, DOI={10.1002/adfm.201301913}, number={7}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Ghosh, Dipankar and Sakata, Akito and Carter, Jared and Thomas, Pam A. and Han, Hyuksu and Nino, Juan C. and Jones, Jacob L.}, year={2013}, month=sep, pages={885–896} }