Crossref journal-article
Wiley
Advanced Functional Materials (311)
Abstract

AbstractElectronic structure theory has recently been used to propose hypothetical compounds in presumed crystal structures, seeking new useful functional materials. In some cases, such hypothetical materials are metastable, albeit with technologically useful long lifetimes. Yet, in other cases, suggested hypothetical compounds may be significantly higher in energy than their lowest‐energy crystal structures or competing phases, making their synthesis and eventual device‐stability questionable. By way of example, the focus here is on the family of 1:1:1 compounds ABX called “filled tetrahedral structure” (sometimes called Half‐Heusler) in the four groups with octet electron count: I‐I‐VI (e.g., CuAgSe), I‐II‐V (e.g., AgMgAs), I‐III‐IV (e.g., LiAlSi), and II‐II‐IV (e.g., CaZnSn). First‐principles thermodynamics is used to sort the lowest‐energy structure and the thermodynamic stability of the 488 unreported hypothetical ABX compounds, many of which were previously proposed to be useful technologically. It is found that as many as 235 of the 488 are unstable with respect to decomposition (hence, are unlikely to be viable technologically), whereas other 235 of the unreported compounds are predicted to be thermodynamically stable (hence, potentially interesting new materials). 18 additional materials are too close to determine. The electronic structures of these predicted stable compounds are evaluated, seeking potential new material functionalities.

Bibliography

Zhang, X., Yu, L., Zakutayev, A., & Zunger, A. (2012). Sorting Stable versus Unstable Hypothetical Compounds: The Case of Multi‐Functional ABX Half‐Heusler Filled Tetrahedral Structures. Advanced Functional Materials, 22(7), 1425–1435. Portico.

Authors 4
  1. Xiuwen Zhang (first)
  2. Liping Yu (additional)
  3. Andriy Zakutayev (additional)
  4. Alex Zunger (additional)
References 82 Referenced 120
  1. 10.1126/science.245.4920.841
  2. 10.1126/science.271.5245.53
  3. 10.1103/PhysRevB.82.144112
  4. 10.1103/PhysRevB.62.3952
  5. 10.1103/PhysRevLett.99.127201
  6. 10.1016/j.matlet.2011.01.013
  7. {'key': 'e_1_2_8_4_2', 'first-page': '11075078', 'author': 'Roy A.', 'year': '2011', 'journal-title': 'arXiv'} / arXiv by Roy A. (2011)
  8. 10.1103/PhysRevLett.106.156402
  9. 10.1103/PhysRevB.36.4547
  10. 10.1103/PhysRevB.82.125210
  11. 10.1103/PhysRevB.81.075208
  12. 10.1063/1.102695
  13. 10.1103/PhysRevLett.64.36
  14. {'key': 'e_1_2_8_8_4', 'volume-title': 'Quantum Well and Superlattice Physic II', 'author': 'Capasso F.', 'year': '1988'} / Quantum Well and Superlattice Physic II by Capasso F. (1988)
  15. 10.1002/1521-3773(20020517)41:10<1755::AID-ANIE1755>3.0.CO;2-C
  16. 10.1103/PhysRevLett.90.256401
  17. 10.1103/PhysRevLett.91.037204
  18. 10.1038/nmat1115
  19. 10.1103/PhysRevB.72.054103
  20. 10.1103/PhysRevLett.82.767
  21. 10.1103/PhysRevB.60.R8449
  22. {'key': 'e_1_2_8_11_2', 'volume-title': 'Crystallographic Databases', 'author': 'Bergerhoff G.', 'year': '1987'} / Crystallographic Databases by Bergerhoff G. (1987)
  23. 10.1107/S0108768102006948
  24. c) ICDD PDF: International Centre For Diffraction Data Powder Diffraction File Newtown Square PA USA.
  25. 10.1021/cm100795d
  26. b)X.Zhang V.Stevanović M.d'Avezac S.Lany A.Zunger unpublished.
  27. 10.1103/PhysRev.139.A796
  28. 10.1016/S0081-1947(08)60248-9
  29. 10.1103/RevModPhys.74.601
  30. a)H.Nowotny W.Sibert Z.Metall 1941 33 391; (10.1515/ijmr-1941-331202)
  31. 10.1007/BF00738267
  32. 10.1002/zaac.19482570101
  33. 10.1007/BF00906437
  34. 10.1103/PhysRevB.31.2570
  35. 10.1103/PhysRevLett.56.528
  36. {'key': 'e_1_2_8_14_8', 'first-page': '523', 'volume-title': 'Electronic Structure and Stability of AIBIICV Filled Tetrahedral Compounds', 'author': 'Wood D. M.', 'year': '1987'} / Electronic Structure and Stability of AIBIICV Filled Tetrahedral Compounds by Wood D. M. (1987)
  37. {'key': 'e_1_2_8_15_2', 'first-page': '219', 'volume': '5', 'author': 'Heusler F.', 'year': '1903', 'journal-title': 'Verhandlungen der Deutschen Physikalischen Gesellschaft'} / Verhandlungen der Deutschen Physikalischen Gesellschaft by Heusler F. (1903)
  38. 10.1002/adfm.200701369
  39. 10.1103/PhysRevB.64.052409
  40. 10.1063/1.1868063
  41. 10.1103/PhysRevB.74.134426
  42. 10.1063/1.99188
  43. 10.1016/S0022-0248(01)02249-7
  44. 10.1103/PhysRevB.36.4439
  45. 10.1103/PhysRevB.37.7140
  46. 10.1103/PhysRevB.49.11452
  47. 10.1103/PhysRevB.72.233201
  48. 10.1038/nmat2770
  49. 10.1038/nmat2771
  50. 10.1107/S0365110X59002857
  51. {'key': 'e_1_2_8_19_3', 'first-page': '295212', 'volume': '20', 'author': 'Trimarchi G.', 'year': '2008', 'journal-title': 'J. Phys.: Condens. Mater.'} / J. Phys.: Condens. Mater. by Trimarchi G. (2008)
  52. 10.1103/PhysRevB.80.092101
  53. 10.1103/PhysRevB.79.092102
  54. 10.1103/PhysRevB.80.241202
  55. 10.1103/PhysRevLett.104.245501
  56. 10.1063/1.3488440
  57. The structure‐search with GSGO was performed for structures with fewer than 24 atoms. The population size was set to 64 and the 16 worst individuals were replaced by offspring at each generation. The rate of crossover versus mutation was set to 0.7. A minimum of two independent evolutionary runs with 14 or more generations were performed for each GSGO search.
  58. 10.1103/PhysRevLett.75.288
  59. 10.1063/1.2210932
  60. 10.1038/nature07736
  61. 10.1038/nature07786
  62. We used the Perdew‐Burke‐Ernzerhof (PBE) exchange‐correlation functional[23a 23b]as implemented in the Vienna ab initio simulation package (VASP) [23c]the projector‐augmented wave (PAW) pseudopotential [23d]and energy‐cutoff of 220–520 eV. The reciprocal space is sampled using grids with densities of 2π × 0.068 Å−1and 2π × 0.051 Å−1for relaxation and static calculation respectively. For Cu Ag and Au we used the DFT+U method[23e]and the same U values as in ref. [24].
  63. 10.1016/0038-1098(80)91101-1
  64. 10.1103/PhysRevLett.77.3865
  65. 10.1016/0927-0256(96)00008-0
  66. 10.1103/PhysRevB.59.1758
  67. 10.1103/PhysRevB.57.1505
  68. V.Stevanović S.Lany X.Zhang A.Zunger unpublished.
  69. 10.1038/nmat2321
  70. The fitted elemental energies[24](the values of anionic C Si Ge Sn and Pb are very close to the total energies calculated from GGA directly thus the latter are used for simplicity) we used here are shown to improve the calculated formation enthalpies leading to the root‐mean‐square of 0.07 eV per atom. Correspondingly we repeated the thermodynamic stability analysis for each compound 10 more times by varying the fitted elemental energy –0.1 to 0.1 eV per atom and the compounds that can have both stable and unstable answers were labeled by undetermined in our accuracy of method.
  71. 10.1103/PhysRevB.78.245207
  72. {'key': 'e_1_2_8_28_2', 'author': 'Yu L.', 'journal-title': 'Phys. Rev. Lett.'} / Phys. Rev. Lett. by Yu L.
  73. The new oxide compound AuKO does not appear in the list of 209 predicted oxides in ref. [30a] since Au element was not considered. Other oxides that were calculated to be unstable in this work also do not appear in the list of stable ternary oxides reported in ref. [30a].
  74. 10.1021/cm100795d
  75. 10.1016/j.tsf.2010.10.045
  76. 10.1016/0022-5088(90)90120-9
  77. {'key': 'e_1_2_8_30_5', 'first-page': '11080584', 'author': 'Beleanu A.', 'year': '2011', 'journal-title': 'arXiv'} / arXiv by Beleanu A. (2011)
  78. 10.1016/S0304-8853(01)00035-X
  79. 10.1016/S0304-8853(00)00528-X
  80. 10.1002/zaac.19936190703
  81. 10.1103/PhysRevB.84.041109
  82. 10.1063/1.1736034
Dates
Type When
Created 13 years, 6 months ago (Feb. 3, 2012, 4:11 a.m.)
Deposited 1 year, 10 months ago (Oct. 11, 2023, 1:22 p.m.)
Indexed 3 weeks, 5 days ago (Aug. 6, 2025, 9:40 a.m.)
Issued 13 years, 6 months ago (Feb. 3, 2012)
Published 13 years, 6 months ago (Feb. 3, 2012)
Published Online 13 years, 6 months ago (Feb. 3, 2012)
Published Print 13 years, 4 months ago (April 10, 2012)
Funders 0

None

@article{Zhang_2012, title={Sorting Stable versus Unstable Hypothetical Compounds: The Case of Multi‐Functional ABX Half‐Heusler Filled Tetrahedral Structures}, volume={22}, ISSN={1616-3028}, url={http://dx.doi.org/10.1002/adfm.201102546}, DOI={10.1002/adfm.201102546}, number={7}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Zhang, Xiuwen and Yu, Liping and Zakutayev, Andriy and Zunger, Alex}, year={2012}, month=feb, pages={1425–1435} }