Abstract
AbstractElectronic structure theory has recently been used to propose hypothetical compounds in presumed crystal structures, seeking new useful functional materials. In some cases, such hypothetical materials are metastable, albeit with technologically useful long lifetimes. Yet, in other cases, suggested hypothetical compounds may be significantly higher in energy than their lowest‐energy crystal structures or competing phases, making their synthesis and eventual device‐stability questionable. By way of example, the focus here is on the family of 1:1:1 compounds ABX called “filled tetrahedral structure” (sometimes called Half‐Heusler) in the four groups with octet electron count: I‐I‐VI (e.g., CuAgSe), I‐II‐V (e.g., AgMgAs), I‐III‐IV (e.g., LiAlSi), and II‐II‐IV (e.g., CaZnSn). First‐principles thermodynamics is used to sort the lowest‐energy structure and the thermodynamic stability of the 488 unreported hypothetical ABX compounds, many of which were previously proposed to be useful technologically. It is found that as many as 235 of the 488 are unstable with respect to decomposition (hence, are unlikely to be viable technologically), whereas other 235 of the unreported compounds are predicted to be thermodynamically stable (hence, potentially interesting new materials). 18 additional materials are too close to determine. The electronic structures of these predicted stable compounds are evaluated, seeking potential new material functionalities.
References
82
Referenced
120
10.1126/science.245.4920.841
10.1126/science.271.5245.53
10.1103/PhysRevB.82.144112
10.1103/PhysRevB.62.3952
10.1103/PhysRevLett.99.127201
10.1016/j.matlet.2011.01.013
{'key': 'e_1_2_8_4_2', 'first-page': '11075078', 'author': 'Roy A.', 'year': '2011', 'journal-title': 'arXiv'}
/ arXiv by Roy A. (2011)10.1103/PhysRevLett.106.156402
10.1103/PhysRevB.36.4547
10.1103/PhysRevB.82.125210
10.1103/PhysRevB.81.075208
10.1063/1.102695
10.1103/PhysRevLett.64.36
{'key': 'e_1_2_8_8_4', 'volume-title': 'Quantum Well and Superlattice Physic II', 'author': 'Capasso F.', 'year': '1988'}
/ Quantum Well and Superlattice Physic II by Capasso F. (1988)10.1002/1521-3773(20020517)41:10<1755::AID-ANIE1755>3.0.CO;2-C
10.1103/PhysRevLett.90.256401
10.1103/PhysRevLett.91.037204
10.1038/nmat1115
10.1103/PhysRevB.72.054103
10.1103/PhysRevLett.82.767
10.1103/PhysRevB.60.R8449
{'key': 'e_1_2_8_11_2', 'volume-title': 'Crystallographic Databases', 'author': 'Bergerhoff G.', 'year': '1987'}
/ Crystallographic Databases by Bergerhoff G. (1987)10.1107/S0108768102006948
- c) ICDD PDF: International Centre For Diffraction Data Powder Diffraction File Newtown Square PA USA.
10.1021/cm100795d
- b)X.Zhang V.Stevanović M.d'Avezac S.Lany A.Zunger unpublished.
10.1103/PhysRev.139.A796
10.1016/S0081-1947(08)60248-9
10.1103/RevModPhys.74.601
-
a)H.Nowotny W.Sibert Z.Metall 1941 33 391;
(
10.1515/ijmr-1941-331202
) 10.1007/BF00738267
10.1002/zaac.19482570101
10.1007/BF00906437
10.1103/PhysRevB.31.2570
10.1103/PhysRevLett.56.528
{'key': 'e_1_2_8_14_8', 'first-page': '523', 'volume-title': 'Electronic Structure and Stability of AIBIICV Filled Tetrahedral Compounds', 'author': 'Wood D. M.', 'year': '1987'}
/ Electronic Structure and Stability of AIBIICV Filled Tetrahedral Compounds by Wood D. M. (1987){'key': 'e_1_2_8_15_2', 'first-page': '219', 'volume': '5', 'author': 'Heusler F.', 'year': '1903', 'journal-title': 'Verhandlungen der Deutschen Physikalischen Gesellschaft'}
/ Verhandlungen der Deutschen Physikalischen Gesellschaft by Heusler F. (1903)10.1002/adfm.200701369
10.1103/PhysRevB.64.052409
10.1063/1.1868063
10.1103/PhysRevB.74.134426
10.1063/1.99188
10.1016/S0022-0248(01)02249-7
10.1103/PhysRevB.36.4439
10.1103/PhysRevB.37.7140
10.1103/PhysRevB.49.11452
10.1103/PhysRevB.72.233201
10.1038/nmat2770
10.1038/nmat2771
10.1107/S0365110X59002857
{'key': 'e_1_2_8_19_3', 'first-page': '295212', 'volume': '20', 'author': 'Trimarchi G.', 'year': '2008', 'journal-title': 'J. Phys.: Condens. Mater.'}
/ J. Phys.: Condens. Mater. by Trimarchi G. (2008)10.1103/PhysRevB.80.092101
10.1103/PhysRevB.79.092102
10.1103/PhysRevB.80.241202
10.1103/PhysRevLett.104.245501
10.1063/1.3488440
- The structure‐search with GSGO was performed for structures with fewer than 24 atoms. The population size was set to 64 and the 16 worst individuals were replaced by offspring at each generation. The rate of crossover versus mutation was set to 0.7. A minimum of two independent evolutionary runs with 14 or more generations were performed for each GSGO search.
10.1103/PhysRevLett.75.288
10.1063/1.2210932
10.1038/nature07736
10.1038/nature07786
- We used the Perdew‐Burke‐Ernzerhof (PBE) exchange‐correlation functional[23a 23b]as implemented in the Vienna ab initio simulation package (VASP) [23c]the projector‐augmented wave (PAW) pseudopotential [23d]and energy‐cutoff of 220–520 eV. The reciprocal space is sampled using grids with densities of 2π × 0.068 Å−1and 2π × 0.051 Å−1for relaxation and static calculation respectively. For Cu Ag and Au we used the DFT+U method[23e]and the same U values as in ref. [24].
10.1016/0038-1098(80)91101-1
10.1103/PhysRevLett.77.3865
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.57.1505
- V.Stevanović S.Lany X.Zhang A.Zunger unpublished.
10.1038/nmat2321
- The fitted elemental energies[24](the values of anionic C Si Ge Sn and Pb are very close to the total energies calculated from GGA directly thus the latter are used for simplicity) we used here are shown to improve the calculated formation enthalpies leading to the root‐mean‐square of 0.07 eV per atom. Correspondingly we repeated the thermodynamic stability analysis for each compound 10 more times by varying the fitted elemental energy –0.1 to 0.1 eV per atom and the compounds that can have both stable and unstable answers were labeled by undetermined in our accuracy of method.
10.1103/PhysRevB.78.245207
{'key': 'e_1_2_8_28_2', 'author': 'Yu L.', 'journal-title': 'Phys. Rev. Lett.'}
/ Phys. Rev. Lett. by Yu L.- The new oxide compound AuKO does not appear in the list of 209 predicted oxides in ref. [30a] since Au element was not considered. Other oxides that were calculated to be unstable in this work also do not appear in the list of stable ternary oxides reported in ref. [30a].
10.1021/cm100795d
10.1016/j.tsf.2010.10.045
10.1016/0022-5088(90)90120-9
{'key': 'e_1_2_8_30_5', 'first-page': '11080584', 'author': 'Beleanu A.', 'year': '2011', 'journal-title': 'arXiv'}
/ arXiv by Beleanu A. (2011)10.1016/S0304-8853(01)00035-X
10.1016/S0304-8853(00)00528-X
10.1002/zaac.19936190703
10.1103/PhysRevB.84.041109
10.1063/1.1736034
Dates
Type | When |
---|---|
Created | 13 years, 6 months ago (Feb. 3, 2012, 4:11 a.m.) |
Deposited | 1 year, 10 months ago (Oct. 11, 2023, 1:22 p.m.) |
Indexed | 3 weeks, 5 days ago (Aug. 6, 2025, 9:40 a.m.) |
Issued | 13 years, 6 months ago (Feb. 3, 2012) |
Published | 13 years, 6 months ago (Feb. 3, 2012) |
Published Online | 13 years, 6 months ago (Feb. 3, 2012) |
Published Print | 13 years, 4 months ago (April 10, 2012) |
@article{Zhang_2012, title={Sorting Stable versus Unstable Hypothetical Compounds: The Case of Multi‐Functional ABX Half‐Heusler Filled Tetrahedral Structures}, volume={22}, ISSN={1616-3028}, url={http://dx.doi.org/10.1002/adfm.201102546}, DOI={10.1002/adfm.201102546}, number={7}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Zhang, Xiuwen and Yu, Liping and Zakutayev, Andriy and Zunger, Alex}, year={2012}, month=feb, pages={1425–1435} }