Abstract
AbstractA2BO4 spinels constitute one of the largest groups of oxides, with potential applications in many areas of technology, including (transparent) conducting layers in solar cells. However, the electrical properties of most spinel oxides remain unknown and poorly controlled. Indeed, a significant bottleneck hindering widespread use of spinels as advanced electronic materials is the lack of understanding of the key defects rendering them as p‐type or n‐type conductors. By applying first‐principles defect calculations to a large number of spinel oxides the major trends controlling their dopability are uncovered. Anti‐site defects are the main source of electrical conductivity in these compounds. The trends in anti‐sites transition levels are systemized, revealing fundamental “doping rules”, so as to guide practical doping of these oxides. Four distinct doping types (DTs) emerge from a high‐throughput screening of a large number of spinel oxides: i) donor above acceptor, both are in the gap, i.e., both are electrically active and compensated (DT‐1), ii) acceptor above donor, and only acceptor is in the gap, i.e., only acceptor is electrically active (DT‐2), iii) acceptor above donor, and only donor is in the gap, i.e., only donor is electrically active (DT3), and iv) acceptor above donor in the gap, i.e., both donor and acceptor are electrically active, but not compensated (DT‐4). Donors and acceptors in DT‐1 materials compensate each other to a varying degree, and external doping is limited due to Fermi level pinning. Acceptors in DT‐2 and donors in DT‐3 are uncompensated and may ionize and create holes or electrons, and external doping can further enhance their concentration. Donor and acceptor in DT‐4 materials do not compensate each other, and when the net concentration of carriers is small due to deep levels, it can be enhanced by external doping.
References
65
Referenced
184
- Another widely used way of writing the spinel chemical formula is AB2O4. Here we choose to use A2BO4following Zhang and Zunger[2]mainly because the work presented here is part of a larger project that treats all A2BX4compounds (not only spinels) in different structure types including olivine Fe2SiO4 β‐K2SO4 and La2CuO4for which A2BX4is the generally used notation. Further it is to be noted that the A2BO4notation is common for spinels with formal cation valenciesZA= 2 andZB= 4 such as Mg2TiO4.[65]
10.1002/adfm.200901811
10.1007/BF00307535
10.1103/PhysRevLett.96.207204
10.1103/PhysRevLett.15.493
10.1023/A:1022981220548
10.1103/PhysRevB.80.081103
10.1016/S0925-8388(02)00917-9
10.1023/B:JMSE.0000045297.61233.58
10.1007/s11664-009-0701-y
{'key': 'e_1_2_6_11_2', 'first-page': '336', 'volume': '6', 'author': 'Nga N. K.', 'year': '2004', 'journal-title': 'Adv. Tech. Mater. Mater. Process.'}
/ Adv. Tech. Mater. Mater. Process. by Nga N. K. (2004)10.1016/j.ijhydene.2010.01.140
10.1063/1.108374
10.1063/1.108891
10.1063/1.110937
10.1116/1.1351799
10.1063/1.1418425
10.1021/cm000101w
10.1111/j.1151-2916.1988.tb05057.x
10.1103/PhysRevB.81.075112
10.1111/j.1551-2916.2005.00205.x
10.1039/b822903a
10.1111/j.1551-2916.2007.01522.x
10.1016/0254-0584(90)90124-S
10.1016/0254-0584(90)90125-T
10.1016/0254-0584(90)90013-Z
10.1103/PhysRevB.74.184117
10.1063/1.1452789
10.1111/j.1151-2916.1999.tb02248.x
10.1021/jp711566k
10.1002/qua.10407
10.1016/0022-4596(81)90369-8
10.1063/1.1450252
10.1016/j.jcrysgro.2005.08.059
10.1063/1.2431548
10.2109/jcersj2.117.689
10.1063/1.1688571
10.1111/j.1151-2916.1988.tb05057.x
10.1007/s00339-007-4040-7
10.1111/j.1151-2916.1999.tb01844.x
10.1111/j.1151-2916.1969.tb11971.x
- For example occupying 8b(3/8 3/8 3/8) position with metal ion(M) the two‐ coordination shells will be M‐(A4O4)(A12B4). Similarly occupying 16c(0 0 0) leads to a M‐(B2O6)(A6) coordination shell. Other lower‐symmetry Wyckoff positions convert themselves to high symmetry Wyckoff positions for certain values ofx y z and high‐symmetry Wyckoff positions other then 8a 16d lead to nonideal bonding and are unlikely to produce favorable bonding leading to occupation of interstitial positions.
10.1103/PhysRevLett.98.045501
10.1002/bbpc.19770810320
{'key': 'e_1_2_6_45_2', 'first-page': '415', 'volume': '81', 'author': 'Dieckmann R.', 'year': '1977', 'journal-title': 'Ber. Bunsen Ges. Phys. Chem.'}
/ Ber. Bunsen Ges. Phys. Chem. by Dieckmann R. (1977)10.1103/PhysRevB.84.064109
- J. D.Perkins T. R.Paudel A.Zakutayev P.Ndione P. A.Parilla S.Lany D. S.Ginley Y.Shi J. S.Bettinger M. F.Toney Phys. Rev. B2011 in press.
10.1103/PhysRevE.78.016401
10.1103/PhysRevB.80.115206
10.1021/jp110648q
10.1103/PhysRevB.82.104106
10.1002/pssb.201046110
10.1103/PhysRevB.83.075205
10.1088/0953-8984/21/12/125502
10.1088/0965-0393/17/8/084002
10.1103/PhysRevB.79.165202
10.1103/PhysRevB.75.241203
10.1088/0022-3719/18/5/005
10.1103/PhysRevB.51.4014
10.1103/PhysRevB.33.7017
10.1088/0370-1301/67/10/306
10.1103/PhysRev.93.632
10.1103/PhysRevB.78.085214
10.1103/PhysRevLett.105.075501
10.1016/0022-4596(84)90262-7
Dates
Type | When |
---|---|
Created | 13 years, 9 months ago (Oct. 24, 2011, 3:15 a.m.) |
Deposited | 1 year, 10 months ago (Oct. 11, 2023, 12:59 p.m.) |
Indexed | 1 day, 18 hours ago (Aug. 21, 2025, 12:58 p.m.) |
Issued | 13 years, 9 months ago (Oct. 24, 2011) |
Published | 13 years, 9 months ago (Oct. 24, 2011) |
Published Online | 13 years, 9 months ago (Oct. 24, 2011) |
Published Print | 13 years, 8 months ago (Dec. 6, 2011) |
@article{Paudel_2011, title={Doping Rules and Doping Prototypes in A2BO4 Spinel Oxides}, volume={21}, ISSN={1616-3028}, url={http://dx.doi.org/10.1002/adfm.201101469}, DOI={10.1002/adfm.201101469}, number={23}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Paudel, Tula R. and Zakutayev, Andriy and Lany, Stephan and d’Avezac, Mayeul and Zunger, Alex}, year={2011}, month=oct, pages={4493–4501} }