Crossref journal-article
Wiley
Advanced Functional Materials (311)
Abstract

AbstractA2BO4 spinels constitute one of the largest groups of oxides, with potential applications in many areas of technology, including (transparent) conducting layers in solar cells. However, the electrical properties of most spinel oxides remain unknown and poorly controlled. Indeed, a significant bottleneck hindering widespread use of spinels as advanced electronic materials is the lack of understanding of the key defects rendering them as p‐type or n‐type conductors. By applying first‐principles defect calculations to a large number of spinel oxides the major trends controlling their dopability are uncovered. Anti‐site defects are the main source of electrical conductivity in these compounds. The trends in anti‐sites transition levels are systemized, revealing fundamental “doping rules”, so as to guide practical doping of these oxides. Four distinct doping types (DTs) emerge from a high‐throughput screening of a large number of spinel oxides: i) donor above acceptor, both are in the gap, i.e., both are electrically active and compensated (DT‐1), ii) acceptor above donor, and only acceptor is in the gap, i.e., only acceptor is electrically active (DT‐2), iii) acceptor above donor, and only donor is in the gap, i.e., only donor is electrically active (DT3), and iv) acceptor above donor in the gap, i.e., both donor and acceptor are electrically active, but not compensated (DT‐4). Donors and acceptors in DT‐1 materials compensate each other to a varying degree, and external doping is limited due to Fermi level pinning. Acceptors in DT‐2 and donors in DT‐3 are uncompensated and may ionize and create holes or electrons, and external doping can further enhance their concentration. Donor and acceptor in DT‐4 materials do not compensate each other, and when the net concentration of carriers is small due to deep levels, it can be enhanced by external doping.

Bibliography

Paudel, T. R., Zakutayev, A., Lany, S., d’Avezac, M., & Zunger, A. (2011). Doping Rules and Doping Prototypes in A2BO4 Spinel Oxides. Advanced Functional Materials, 21(23), 4493–4501. Portico.

Authors 5
  1. Tula R. Paudel (first)
  2. Andriy Zakutayev (additional)
  3. Stephan Lany (additional)
  4. Mayeul d'Avezac (additional)
  5. Alex Zunger (additional)
References 65 Referenced 184
  1. Another widely used way of writing the spinel chemical formula is AB2O4. Here we choose to use A2BO4following Zhang and Zunger[2]mainly because the work presented here is part of a larger project that treats all A2BX4compounds (not only spinels) in different structure types including olivine Fe2SiO4 β‐K2SO4 and La2CuO4for which A2BX4is the generally used notation. Further it is to be noted that the A2BO4notation is common for spinels with formal cation valenciesZA= 2 andZB= 4 such as Mg2TiO4.[65]
  2. 10.1002/adfm.200901811
  3. 10.1007/BF00307535
  4. 10.1103/PhysRevLett.96.207204
  5. 10.1103/PhysRevLett.15.493
  6. 10.1023/A:1022981220548
  7. 10.1103/PhysRevB.80.081103
  8. 10.1016/S0925-8388(02)00917-9
  9. 10.1023/B:JMSE.0000045297.61233.58
  10. 10.1007/s11664-009-0701-y
  11. {'key': 'e_1_2_6_11_2', 'first-page': '336', 'volume': '6', 'author': 'Nga N. K.', 'year': '2004', 'journal-title': 'Adv. Tech. Mater. Mater. Process.'} / Adv. Tech. Mater. Mater. Process. by Nga N. K. (2004)
  12. 10.1016/j.ijhydene.2010.01.140
  13. 10.1063/1.108374
  14. 10.1063/1.108891
  15. 10.1063/1.110937
  16. 10.1116/1.1351799
  17. 10.1063/1.1418425
  18. 10.1021/cm000101w
  19. 10.1111/j.1151-2916.1988.tb05057.x
  20. 10.1103/PhysRevB.81.075112
  21. 10.1111/j.1551-2916.2005.00205.x
  22. 10.1039/b822903a
  23. 10.1111/j.1551-2916.2007.01522.x
  24. 10.1016/0254-0584(90)90124-S
  25. 10.1016/0254-0584(90)90125-T
  26. 10.1016/0254-0584(90)90013-Z
  27. 10.1103/PhysRevB.74.184117
  28. 10.1063/1.1452789
  29. 10.1111/j.1151-2916.1999.tb02248.x
  30. 10.1021/jp711566k
  31. 10.1002/qua.10407
  32. 10.1016/0022-4596(81)90369-8
  33. 10.1063/1.1450252
  34. 10.1016/j.jcrysgro.2005.08.059
  35. 10.1063/1.2431548
  36. 10.2109/jcersj2.117.689
  37. 10.1063/1.1688571
  38. 10.1111/j.1151-2916.1988.tb05057.x
  39. 10.1007/s00339-007-4040-7
  40. 10.1111/j.1151-2916.1999.tb01844.x
  41. 10.1111/j.1151-2916.1969.tb11971.x
  42. For example occupying 8b(3/8 3/8 3/8) position with metal ion(M) the two‐ coordination shells will be M‐(A4O4)(A12B4). Similarly occupying 16c(0 0 0) leads to a M‐(B2O6)(A6) coordination shell. Other lower‐symmetry Wyckoff positions convert themselves to high symmetry Wyckoff positions for certain values ofx y z and high‐symmetry Wyckoff positions other then 8a 16d lead to nonideal bonding and are unlikely to produce favorable bonding leading to occupation of interstitial positions.
  43. 10.1103/PhysRevLett.98.045501
  44. 10.1002/bbpc.19770810320
  45. {'key': 'e_1_2_6_45_2', 'first-page': '415', 'volume': '81', 'author': 'Dieckmann R.', 'year': '1977', 'journal-title': 'Ber. Bunsen Ges. Phys. Chem.'} / Ber. Bunsen Ges. Phys. Chem. by Dieckmann R. (1977)
  46. 10.1103/PhysRevB.84.064109
  47. J. D.Perkins T. R.Paudel A.Zakutayev P.Ndione P. A.Parilla S.Lany D. S.Ginley Y.Shi J. S.Bettinger M. F.Toney Phys. Rev. B2011 in press.
  48. 10.1103/PhysRevE.78.016401
  49. 10.1103/PhysRevB.80.115206
  50. 10.1021/jp110648q
  51. 10.1103/PhysRevB.82.104106
  52. 10.1002/pssb.201046110
  53. 10.1103/PhysRevB.83.075205
  54. 10.1088/0953-8984/21/12/125502
  55. 10.1088/0965-0393/17/8/084002
  56. 10.1103/PhysRevB.79.165202
  57. 10.1103/PhysRevB.75.241203
  58. 10.1088/0022-3719/18/5/005
  59. 10.1103/PhysRevB.51.4014
  60. 10.1103/PhysRevB.33.7017
  61. 10.1088/0370-1301/67/10/306
  62. 10.1103/PhysRev.93.632
  63. 10.1103/PhysRevB.78.085214
  64. 10.1103/PhysRevLett.105.075501
  65. 10.1016/0022-4596(84)90262-7
Dates
Type When
Created 13 years, 9 months ago (Oct. 24, 2011, 3:15 a.m.)
Deposited 1 year, 10 months ago (Oct. 11, 2023, 12:59 p.m.)
Indexed 1 day, 18 hours ago (Aug. 21, 2025, 12:58 p.m.)
Issued 13 years, 9 months ago (Oct. 24, 2011)
Published 13 years, 9 months ago (Oct. 24, 2011)
Published Online 13 years, 9 months ago (Oct. 24, 2011)
Published Print 13 years, 8 months ago (Dec. 6, 2011)
Funders 0

None

@article{Paudel_2011, title={Doping Rules and Doping Prototypes in A2BO4 Spinel Oxides}, volume={21}, ISSN={1616-3028}, url={http://dx.doi.org/10.1002/adfm.201101469}, DOI={10.1002/adfm.201101469}, number={23}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Paudel, Tula R. and Zakutayev, Andriy and Lany, Stephan and d’Avezac, Mayeul and Zunger, Alex}, year={2011}, month=oct, pages={4493–4501} }