Crossref journal-article
Wiley
Advanced Functional Materials (311)
Abstract

AbstractThe design, synthesis, and structural characterization of two microporous metal–organic framework structures, [M(bdc)(ted)0.5]·2 DMF·0.2 H2O (M = Zn (1), Cu (2); H2bdc = 1,4‐benzenedicarboxylic acid; ted = triethylenediamine; DMF: N,N‐dimethylformamide) is reported. The pore characteristics and gas sorption properties of these compounds are investigated at cryogenic temperatures, room temperature, and higher temperatures by experimentally measuring argon, hydrogen, and selected hydrocarbon adsorption/desorption isotherms. These studies show that both compounds are highly porous with a pore volume of 0.65 (1) and 0.52 cm3 g– 1 (2). The amount of the hydrogen uptake, 2.1 wt % (1) and 1.8 wt % (2) at 77 K (1 atm; 1 atm = 101 325 Pa), places them among the group of metal–organic frameworks (MOFs) having the highest H2 sorption capacity. [Zn(bdc)(ted)0.5]·2 DMF·0.2 H2O adsorbs a very large amount of hydrocarbons, including methanol, ethanol, dimethylether (DME), n‐hexane, cyclohexane, and benzene, giving the highest sorption values among all metal–organic based porous materials reported to date. In addition, these materials hold great promise for gas separation.

Bibliography

Lee, J. Y., Olson, D. H., Pan, L., Emge, T. J., & Li, J. (2007). Microporous Metal–Organic Frameworks with High Gas Sorption and Separation Capacity. Advanced Functional Materials, 17(8), 1255–1262. Portico.

Authors 5
  1. J. Y. Lee (first)
  2. D. H. Olson (additional)
  3. L. Pan (additional)
  4. T. J. Emge (additional)
  5. J. Li (additional)
References 42 Referenced 326
  1. 10.1126/science.1067208
  2. 10.1021/jp0130416
  3. 10.1002/anie.200460712
  4. 10.1021/ja028996w
  5. 10.1038/nature03852
  6. 10.1126/science.1083440
  7. 10.1021/ja049408c
  8. 10.1021/ja0523082
  9. 10.1002/anie.200461214
  10. 10.1002/anie.200462786
  11. 10.1126/science.1101982
  12. 10.1021/ja043756x
  13. 10.1002/anie.200461895
  14. 10.1002/chem.200401201
  15. 10.1021/ja038678c
  16. 10.1021/ja051168t
  17. {'key': 'e_1_2_1_18_2', 'first-page': '297', 'author': 'Férey G.', 'year': '2003', 'journal-title': 'Chem. Commun.'} / Chem. Commun. by Férey G. (2003)
  18. 10.1021/ba-1971-0102.ch044
  19. 10.1021/ja056831s
  20. 10.1021/ja058213h
  21. 10.1021/ja0104352
  22. 10.1021/ja052055c
  23. 10.1038/46248
  24. 10.1002/anie.200390156
  25. 10.1039/b211738j
  26. 10.1021/ja0392871
  27. 10.1016/j.jssc.2005.07.002
  28. {'key': 'e_1_2_1_29_2', 'first-page': '2703', 'volume': '7', 'author': 'Lee J. Y.', 'year': '2005', 'journal-title': 'Sci. Isr.–Technol. Advantages'} / Sci. Isr.–Technol. Advantages by Lee J. Y. (2005)
  29. 10.1002/anie.200503503
  30. 10.1021/ja057667b
  31. Crystal data for [Zn(bdc)(ted)0.5]·2 DMF·0.2 H2O (1): weight‐average molecular weightMw = 432.69 g mol–1 tetragonal P4/ncc(no. 130) a = 14.8999(3) c = 19.1369(2) Å V = 4248.4(2) Å3 Z = 8 T = 100 K density (calcd) = 1.353 mg m–3 MoKα radiation μ = 11.91 cm–1 colorless block crystal size = 0.13 mm × 0.11 mm × 0.03 mm total number of reflections 24 335 (3119 uniqueR(int) = 0.055) R1= 0.044 (2113 data withI > 2σ(I)) wR2= 0.1368 (all data) GOF = 1.008 (all data). CCDC 240928 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  32. 10.1002/1521-3773(20010601)40:11<2111::AID-ANIE2111>3.0.CO;2-F
  33. 10.1021/ic049005d
  34. 10.1252/jcej.16.470
  35. 10.1351/pac198557040603
  36. The surface area and pore volume of the Cu compound2are notably smaller compared with those of1. We believe this is likely due to the difference in the sample quality.
  37. {'key': 'e_1_2_1_38_2', 'first-page': '1717', 'volume': '8', 'author': 'Akhmedov K. S.', 'year': '1987', 'journal-title': 'Izv. Akad. Nauk SSSR'} / Izv. Akad. Nauk SSSR by Akhmedov K. S. (1987)
  38. 10.1021/jp980674k
  39. 10.1016/j.micromeso.2003.09.025
  40. 10.1021/jp040216d
  41. Bruker (2003) SAINT+(Version 6.45) SMART (Version 5.629) and SHELXTL (Version 6.14). Bruker AXS Inc. Madison WI USA.
  42. Site disorder includes equivalent fourfold positions for the ted ligand (with both N atoms on the same ( z) axis as the Zn atoms) and nonequivalent twofold positions (85:15) for the DMF site (near 1 0 ); water is only present at about the 10 % level at (– ); nonhydrogen atoms were refined with anisotropic displacement parameters except for the disordered C atoms of the ted (a singleUiso value for all six C atoms with 0.25 site occupancy refined to 0.015(1)) the minor (15 %) component of the DMF and the water O atom; all H atoms at calculated positions; largest residuals after refinement were less than 0.5 e Å–3.
Dates
Type When
Created 18 years, 4 months ago (April 3, 2007, 7:46 a.m.)
Deposited 1 year, 11 months ago (Sept. 11, 2023, 3:33 p.m.)
Indexed 1 month, 3 weeks ago (July 6, 2025, 10:05 a.m.)
Issued 18 years, 4 months ago (April 3, 2007)
Published 18 years, 4 months ago (April 3, 2007)
Published Online 18 years, 4 months ago (April 3, 2007)
Published Print 18 years, 3 months ago (May 21, 2007)
Funders 1
  1. National Energy Technology Laboratory 10.13039/100013165

    Region: Americas

    gov (Research institutes and centers)

    Labels13
    1. U.S. Department of Energy National Energy Technology Laboratory
    2. U.S. Department of Energy's National Energy Technology Lab
    3. United States National Energy Technology Laboratory
    4. U.S. Dept. of Energy-National Energy Technology Laboratory
    5. United States Department of Energy's National Energy Technology Laboratory
    6. DOE's National Energy Technology Laboratory
    7. National Energy Technology Laboratory, U.S. Department of Energy
    8. National Energy Technology Lab
    9. DOE/National Energy Technology Laboratory
    10. U.S. Department of Energy-National Energy Technology Laboratory
    11. U.S. Department of Energy's National Energy Technology Laboratory
    12. US Department of Energy's National Energy Technology Laboratory
    13. NETL
    Awards1
    1. DE-FC26-05NT42446

@article{Lee_2007, title={Microporous Metal–Organic Frameworks with High Gas Sorption and Separation Capacity}, volume={17}, ISSN={1616-3028}, url={http://dx.doi.org/10.1002/adfm.200600944}, DOI={10.1002/adfm.200600944}, number={8}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Lee, J. Y. and Olson, D. H. and Pan, L. and Emge, T. J. and Li, J.}, year={2007}, month=apr, pages={1255–1262} }