Crossref journal-article
Wiley
Advanced Functional Materials (311)
Abstract

AbstractThis article summarizes our most recent studies on improved Li+‐intercalation properties in vanadium oxides by engineering the nanostructure and interlayer structure. The intercalation capacity and rate are enhanced by almost two orders of magnitude with appropriately fabricated nanostructures. Processing methods for single‐crystal V2O5 nanorod arrays, V2O5·n H2O nanotube arrays, and Ni/V2O5·n H2O core/shell nanocable arrays are presented; the morphologies, structures, and growth mechanisms of these nanostructures are discussed. Electrochemical analysis demonstrates that the intercalation properties of all three types of nanostructure exhibit significantly enhanced storage capacity and rate performance compared to the film electrode of vanadium pentoxide. Addition of TiO2 to orthorhombic V2O5 is found to affect the crystallinity, microstructure, and possible interaction force between adjacent layers in V2O5, and subsequently leads to enhanced Li+‐intercalation properties in V2O5. The amount of water intercalated in V2O5 is found to have a significant influence on the interlayer spacing and electrochemical performance of V2O5·n H2O. A systematic electrochemical study has demonstrated that the V2O5·0.3 H2O film has the optimal water content and exhibits the best Li+‐intercalation performance.

Bibliography

Wang, Y., Takahashi, K., Lee, K. H., & Cao, G. Z. (2006). Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation. Advanced Functional Materials, 16(9), 1133–1144. Portico.

Authors 4
  1. Y. Wang (first)
  2. K. Takahashi (additional)
  3. K. H. Lee (additional)
  4. G. Z. Cao (additional)
References 73 Referenced 421
  1. 10.1149/1.2221184
  2. 10.1016/S0378-7753(97)02680-3
  3. 10.1016/0013-4686(93)80046-3
  4. 10.1149/1.1836594
  5. 10.1016/0167-2738(94)90410-3
  6. 10.1149/1.2220730
  7. 10.1016/0167-2738(90)90049-W
  8. 10.1149/1.1836614
  9. 10.1016/0584-8539(83)80040-3
  10. 10.1149/1.2050053
  11. 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  12. 10.1557/mrs2002.195
  13. 10.1038/nmat1368
  14. J. P. Maranchi O. I. Velikokhatny M. K. Datta I. S. Kim P. N. Kumta inChemical Processing of Ceramics(Eds: B. Lee S. Komarneni) Marcel Dekker New York2005 p. 667. (10.1201/9781420027334.ch26)
  15. 10.1021/ic50200a034
  16. D. W. Murphy inIntercalation Chemistry(Eds: M. S. Whittingham A. J. Jacobsen) Academic Press New York1982 p. 563.
  17. Inorganic Crystal Structures(Eds: B. G. Hyde S. Anderson) Wiley New York1989 p. 16.
  18. 10.1016/0378-7753(87)80108-8
  19. 10.1016/0378-7753(87)80107-6
  20. 10.1016/0013-4686(93)80052-2
  21. 10.1149/1.2050041
  22. 10.1021/ja026143y
  23. 10.1149/1.1391770
  24. 10.1021/cm00016a006
  25. 10.1016/S0013-4686(99)00204-2
  26. 10.1149/1.1595658
  27. 10.1016/0167-2738(95)00068-H
  28. 10.1002/pssa.200510026
  29. 10.1149/1.1392451
  30. 10.1002/(SICI)1521-3773(19980518)37:9<1263::AID-ANIE1263>3.0.CO;2-R
  31. 10.1149/1.1392008
  32. 10.1021/cm010518h
  33. 10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
  34. 10.1021/jp0491820
  35. 10.1021/ja026143y
  36. 10.1149/1.1627342
  37. 10.1016/0378-7753(93)80109-3
  38. A. K. Cuentas‐Gallegos P. Gómez‐Romero inNew Trends in Intercalation Compounds for Energy Storage(Eds: C. Julien J. P. Pereira‐Ramos A. Momchilov) Kluwer Academic Publisher Dordrecht The Netherlands2002 p. 535.
  39. 10.1016/S0022-3093(02)01033-5
  40. 10.1016/S0013-4686(02)00061-0
  41. 10.1016/S0013-4686(01)00408-X
  42. 10.1016/S0013-4686(99)00205-4
  43. 10.1016/0378-7753(90)80036-D
  44. 10.1039/jm9960600049
  45. 10.1016/S0040-6090(98)00974-2
  46. 10.1143/JJAP.44.662
  47. 10.1063/1.1857087
  48. 10.1021/jp044286w
  49. 10.1021/jp044772j
  50. 10.1002/1521-4095(200108)13:16<1269::AID-ADMA1269>3.0.CO;2-S
  51. 10.1002/1616-3028(20020101)12:1<59::AID-ADFM59>3.0.CO;2-B
  52. 10.1002/adma.200390099
  53. 10.1023/B:JMSC.0000012919.21763.b2
  54. 10.1007/s00339-004-2738-3
  55. 10.1023/A:1020772020988
  56. 10.1021/jp040492s
  57. 10.1021/jp051686q
  58. 10.1021/jp051275
  59. 10.1021/jp044651j
  60. 10.1007/s00339-005-3375-1
  61. {'key': 'e_1_2_1_62_2', 'first-page': '267', 'volume': '22', 'author': 'van der Drift A.', 'year': '1968', 'journal-title': 'Philips Res. Rep.'} / Philips Res. Rep. by van der Drift A. (1968)
  62. 10.1016/S0016-7037(99)00037-X
  63. C. M. Chun A. Navrotsky I. A. Aksay inProc. Microscopy and Microanalysis(Ed: G. W. Bailey) Jones and Begell Publishing New York1995 p. 188. (10.1017/S0424820100137318)
  64. 10.1016/S0013-4686(99)00034-1
  65. 10.1021/cm00057a007
  66. D. Linden in Handbook of Batteries 2nd ed. McGraw‐Hill New York1995.
  67. 10.1016/S0167-2738(01)00844-X
  68. 10.1149/1.1627342
  69. 10.1016/0378-7753(93)80109-3
  70. 10.1016/S0022-3093(02)01033-5
  71. 10.1149/1.1571534
  72. G. Z. Cao Nanostructures and Nanomaterials: Synthesis Properties and Applications Imperial College Press London2004. (10.1142/p305)
  73. 10.1063/1.1707771
Dates
Type When
Created 19 years, 4 months ago (April 24, 2006, 1:02 p.m.)
Deposited 1 year, 9 months ago (Nov. 15, 2023, 10:19 a.m.)
Indexed 1 hour, 16 minutes ago (Aug. 31, 2025, 6:40 a.m.)
Issued 19 years, 4 months ago (April 24, 2006)
Published 19 years, 4 months ago (April 24, 2006)
Published Online 19 years, 4 months ago (April 24, 2006)
Published Print 19 years, 2 months ago (June 6, 2006)
Funders 0

None

@article{Wang_2006, title={Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation}, volume={16}, ISSN={1616-3028}, url={http://dx.doi.org/10.1002/adfm.200500662}, DOI={10.1002/adfm.200500662}, number={9}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Wang, Y. and Takahashi, K. and Lee, K. H. and Cao, G. Z.}, year={2006}, month=apr, pages={1133–1144} }